

catalog 4.0

FLUID CONTAMINATION SOLUTIONS

² Table of Contents

26

42

Fluid Contamination Reference Materials

- 4 Our Story 6 Understanding ISO Codes
- 8 ISO Code Limits
- 10 Bearing & Component Life Extension
 - 12 Fluid Life Extension
 - Fluid Analysis Reference Guide 14
 - 16 Hy-Pro Contamination Calculator App
 - 18 Viscosity Conversion & Reference Guide
 - 22 Filter Assembly Sizing

Filter Elements & Media

34 Cellulose to Glass Upgrades 36 Lube Design Filter Elements

DFE Dynamic Filter Efficiency

- 37 Dynafuzz Stainless Steel Fiber Media
- NSD Non-Spark Discharge Filter Elements 38
- 39 Water Removal Filter Elements
- 40 **Turbo-TOC Filter Element Upgrades**

Fluid Conditioning Equipment

S. E.L. HERRING EXPERIMENT OF
1

Off-line Filter Systems

- **Off-line Filtration**
- 44 **CFU Compact Filter Unit**
- 48 **FPL** Filter Panel
- 52 FC Filter Carts
- 56 FSL High Viscosity Filter Systems
- FSLD Duplex High Viscosity Filter Skids 60
- FSW Wall Mounted High Viscosity Filter System 64
- 68 FCL High Viscosity Filter Carts
- 72 HS Heater Skids

Diesel Filter Housings & Systems

- 76 Diesel Contamination - Types, Removal and Prevention
- 78
- - COD Diesel Conditioning Filter Systems 82 FSLCOD Diesel Conditioning Filter Systems
 - FCLCOD Diesel Conditioning Filter Carts 86
 - 90 CSD Diesel Coalesce Filter Housing

Varnish & Acid Scavenging Systems

- Varnish Contamination Types, Removal and Prevention
- SVR Soluble Varnish Removal Filter Systems
- **104** FSTO Turbine Oil Varnish Removal Systems
- **108** FSA Phosphate Ester Varnish Removal Systems
- FSJL Jet Lube Varnish Removal Systems 112
- ECR Electrostatic Contamination Removal Systems 116
- 118 ICB Ionic Charged Bonding Filter Elements

- Water Removal EquipmentWater Contamination Types, Removal and Prevention
- 124 VUD Vac-U-Dry Vacuum Dehydration Systems
- **132** V1 Compact VUD Vacuum Dehydration Systems
- 136 COT Turbine Oil Conditioning Systems
- **142** FCLCOT Turbine Oil Conditioning Filter Carts
- **146** TMR-N2 Headspace Dehydrator + Nitrogen Generators
- 148 TMR-Air Headspace Dehydrators

Fluid Handling + Storage LCS Liquid Conditioning Station 150

- **154** Custom Equipment

Table of Contents

Filter

Assemblies

Part Number Quick Reference BF Breathers CFU eathers

	and all at		COD
		Low Pressure Assemblies	СОТ
		LF(M) High Viscosity/High Flow Filter Housings	CSD
		LFW Wall Mounted High Viscosity Filter Housings	DFH
	176		DFN
			DLF(M)
			ECR
	-to 197	Medium Pressure Assemblies	F8
		I Contraction of the second seco	FC
			FCL
			FCLCOD
			FCLCOT
	-	High Pressure Assemblies	FPL
	192	PF2 High Pressure In-Line Filter Assemblies	FSA
		PF4 High Pressure Based Mounted Filter Assemblies	FSJL
	200	0	FSL
			FSLCOD
			FSLD
	210	Duplex Filter Assemblies DLF(M) High Viscosity/High Flow Duplex Filter Housings	FSTO
		5 DFN Low Pressure Duplex Filter Assemblies	FSW
	220	DFH High Pressure Duplex Filter Assemblies	HS Hy-Dry
			LCS
			LES LF(M)
Reservoir	224 230 232	5 5	LFW
Accessories		0	MF3
		spin-on breathers	PF2
	▝▛▁ॖॖॕ▝▛▝▅▔▀		PF4
	-		PFH
Test Kits &	234		PFHB
Equipment	236	VTK Varnish Test Kits PM-1 Particle Monitor	S409
		OA-TO Turbine Oil Analysis	S75-S76
	242	2 OA-PE Phosphate Ester Analysis	Spin-On Brea
	1		SVR
Appendix		Questionnaires & Data Sheets	TF4
прренал	244	VUD Questionnaire	TFR
	245		TMR-Air
	246	Warranty & RGA	TMR-N2
	248		V1
	249		VTK
	250	2	VUD
	251	Documentation ATEX Recommendation for the use of fluid filters	

In-Tank Assemblies TF4 In-Tank Filter Assemblies

TFR In-Tank Filter Assemblies

- 252 FLA (Full Load Amp) for Powered Equipment
- Indicator Wiring Diagrams
- Housing Mounting Specifications
- 255 ISO Certification & Quality Statement

Our Story HY-PRO

At Hy-Pro, our mission is to make our customers as efficient as possible. From improving the reliability of hydraulic and lube oil assets through our filter elements and filtration equipment to stopping equipment failures and downtime to reducing the environmental impact from the use and disposal of industrial fluids, it is our goal to eliminate industrial fluid contamination and all difficulties related to it.

Innovation drives the growth of Hy-Pro to offer our customers an ever-increasing arsenal to combat fluid contamination. Our state of the art manufacturing facilities are home to the most inventive and streamlined design and build processes in the industry which allow us to create tailored solutions to the problems facing our customers. We thrive on continually improving and identifying new and refined ways to enhance the customer experience. By providing oil sampling and analysis, training on best practices, unmatched customer service, unrivaled equipment and the world's most comprehensive critical filter element interchange, we strive to offer the most complete and effective fluid contamination solutions.

Since our founding in 1986, Hy-Pro has grown to provide our products and services across the world. Our expert field tech reps provide vital on-site training, troubleshooting and strategies to solve industries' toughest contamination challenges across 6 continents. Through working with our expansive distribution network, we are able to deliver fast, reliable service on a local level, ensuring the relationships we make along the way are always cared for and our appreciation for them expressed. Those relationships, along with our nonstop desire for progress, allow us to improve the lives of our customers across the world.

Aaron Hoeg Operations Manager

What we're about

Advanced Media Technology	Innovative media development and DFE rated filter elements are the core of Hy-Pro's products, delivering lower operating ISO Codes for reliable plant operation. Optimized vacuum dehydration, coalesce and nitrogen membrane water removal technologies eliminate critical system water related failures. Ion Charge Bonding (ICB) treatment of specified lube and hydraulic oils addresses fluid contamination on a molecular level to prevent servo valve failures and extend fluid life. Dedicated smart off-line filtration systems condition extremely high viscosity oils that were previously considered not filterable. And that's just scratching the surface of what Hy-Pro can do.
The Highest Quality	Engineered, manufactured and tested in our state of the art facilities across the US, our contamination solutions are built to be rugged, dependable, and easy to use. From the highest quality materials and components, we deliver the best filtration equipment anywhere in the world. The same quality goes into Hy-Pro filter elements, eliminating any contamination challenge imaginable to provide our customers with the incredible results and peace of mind they deserve.
Unmatched Expertise	Work with Hy-Pro and you're working shoulder-to-shoulder with the industry experts to implement contamination control and prevention in all things industrial fluid. But it doesn't stop there. From customized strategies and long term solutions to on-site service, support and training, our expert Field Technical Reps are involved from before implementation begins to long after the life of the filter element to ensure our customers are provided the best solutions for their specific contamination problems.
Flexible Design & Manufacturing	Whether you're selecting the perfect options from our standard product lines or need a completely custom, one of a kind solution, we listen to your needs and collaborate with you to deliver a specific contamination solution to fit your exact application.
Rapid Response	The flexibility in our manufacturing processes along with our extensive inventory of ready-to-ship filter elements allow us to respond to any situation with incredible speed. For standard delivery, you'll receive your elements in days, not weeks. And in some cases like the event of any emergency or upset situation, we're even able to deliver your exact filter element in hours to maximize your uptime and keep your plant running efficiently.
Eliminate Waste & Protect the Environment	Through contamination control and molecular treatment, Hy-Pro extends the useful life of critical hydraulic and lube oils to improve reliability and bottom line profitability. Preventing premature fluid replacement reduces environmental impact, which is a responsibility that falls on everyone. With our products and efforts in fluid management, we continue to bring conservation of natural resources and reduction of industrial waste to the forefront.
	hyprofiltration.com/about HY-PRO

Understanding ISO Codes

The ISO Cleanliness Code (per ISO4406-1999) is used to quantify particulate contamination levels per milliliter of fluid at 3 sizes - $4\mu_{\text{ICI}}$, $6\mu_{\text{ICI}}$, and $14\mu_{\text{ICI}}$. It is expressed in 3 numbers (example 19/17/14) where each number represents a contaminant level code for the correlating particle size. The code includes all particles of the specified size and larger.

It is important to note that each time a code increases, the quantity range of particles is doubling. Inversely, as a code decreases by one the contaminant level is cut in half. ISO Code Example: $\begin{array}{c|c} 13/10/6\\ & \uparrow & \uparrow\\ 4\mu_{[C]} & 6\mu_{[C]} & 14\mu_{[C]}\\ \text{Channel Channel Channel} \end{array}$

ISO 4406:1999 Code Chart

ISO Code	Particles per l Lower Limit	Milliliter (PPM) Upper Limit		Sample Values Particle Size	s Before Filti PPM	ration ISO 4406 Code Range	ISO Code
24	80,000	160,000		► 4µ _[C]	151773	80,000-160,000	24
23	40,000	80,000	-	4.6µ _[C]	87210		
22	20,000	40,000		- 6μ [c]	38363	20,000-40,000	22
21	10,000	20,000	_	10µ _[C]	8229		
20	5,000	10,000	- -	► 14µ _[C]	3339	2,500-5,000	19
19	2,500	5,000		21µ _[C]	1048		
18	1,300	2,500	_	38µ _[C]	112		
17	640	1,300		68µ _[C]	2		
16	320	640					
15	160	320		Sample Value	s After Filtra	tion	
14	80	160		Particle Size	PPM	ISO 4406 Code Range	ISO Code
13	40	80		► 4µ _[C]	69	40-80	13
12	20	40	_	4.6µ _[C]	35		
11	10	20	_ •	- 6μ [c]	7	5-10	10
10	5	10		10µ _[C]	5		
9	2.5	5	- -	▶ 14µ _[C]	0.4	0.32-0.64	6
8	1.3	2.5	_	21µ _[C]	0.1		
7	0.64	1.3	_	38µ _[C]	0.0		
6	0.32	0.64		68µ _[C]	0.0		

Fluid Cleanliness Code Comparisons

ISO/DIS 4406	NAS 1638	SAE 749	Defence Standa	rd 05/42
BS 5540/4 Codes			Table A	Table B
25/23/17			100,000	
24/22/15			21,000	
23/21/18	12			
23/21/14			15,000	
22/20/17	11			
22/20/13			6,300	
21/19/16	10			
21/19/13			4,400	6,300F
20/18/15	9	6		
20/18/13				4400F
20/18/12			2,000	
19/17/14	8	5		
19/17/11			1,300	2,000F
18/16/13	7			
18/16/11				1,300F
18/16/10			800	
17/15/12	6	3		
17/15/10				800F
17/15/09			400	
16/14/11	5	2		
16/14/09				400F
15/13/10	4	1		
14/12/09	3	0		
13/11/08	2			

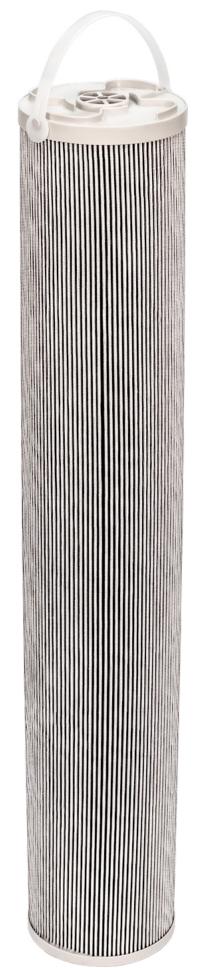
ISO Code Limits

Hydraulic component and bearing manufacturers set ISO fluid cleanliness code limits that are the maximum tolerance for fluid contamination under which predictable performance and life can be maintained. These limits often become fluid cleanliness targets at the mill or plant level. Using the upper limit as a target means that you are operating on the absolute edge with no room for error. But there is a better way.

Our mission is to make our customers as efficient as possible. To do this we recommend and help implement operating ISO Codes that are well below OEM upper limits. Our focus is not to hit a valve manufacturer's ISO Code limit but to help our customer reduce servo valve replacements from 220 in one year to 6 in the next by implementing lower operating ISO Codes and drastically reducing component wear/failure. And since that customer could prove that their oil was cleaner than required by spec, those 6 servos in year 2 were replaced under warranty by the manufacturer. Lower operating ISO Codes can extend component life by triple, quadruple and beyond, resulting in huge reliability, profitability and efficiency gains.

How clean is my fluid?

Identifying proper sampling ports and locations, taking accurate samples and correctly interpreting results are critical to success. That's why our training and support are based on knowing and understanding the importance of fluid cleanliness and sampling. Hy-Pro is on the front line with on-line particle counters, expertise and strategies to achieve lower operating ISO Codes.


Setting operating ISO Codes.

The table on the following page represents Hy-Pro's recommendations for operating ISO Code by component and pressure. These are lower than typical industry standard target ISO Codes and are based on our experience of extending component life and reliability. Other considerations in setting a lower operating ISO Codes include:

- Component criticality (turbine hydraulic controls)
- Safety (amusement park hydraulics)
- Excessive shock or vibration (mining excavator)
- High frequency duty cycle (high speed stamping press)

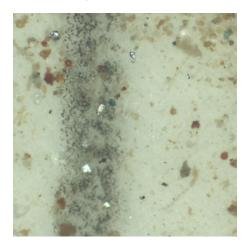
Total System Cleanliness

Upgrading to Hy-Pro DFE rated filter elements, Hy-Dry breathers and adding off-line contamination solutions where needed are a small expense compared to the cost of contamination related component repair and replacement, premature fluid replacement, increased maintenance demands and, worst of all, downtime. By taking these small steps and becoming proactive in preventing contamination, you're setting yourself and your plant up with the best possible chance for success.

Recommended^{*} Upper Limit ISO Cleanliness Codes per Component by Pressure Rating

	Pressure <2000 psi (1	38 bar)	Pressure 2000-3000 psi (138-207 bar)		Pressure >3000 psi (207 bar)	
	Industry Standard	Hy-Pro Recommended	Industry Standard	Hy-Pro Recommended	Industry Standard	Hy-Pro Recommended
Pumps						
Fixed gear	20/18/15	≤ 17/15/12	19/17/15	≤ 16/14/11	-	-
Fixed piston	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	17/15/12	≤ 15/13/10
Fixed vane	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Variable piston	18/16/13	≤ 16/14/11	17/15/13	≤ 15/13/10	16/14/12	≤ 15/13/10
Variable vane	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10	-	-
Valves						
Cartridge	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10
Check valve	20/18/15	≤ 17/15/12	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11
Directional (solenoid)	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Flow control	19/17/14	≤ 17/15/12	18/16/13	≤ 16/14/11	18/16/13	≤ 16/14/11
Pressure control (modulating)	19/17/14	≤ 17/15/12	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10
Proportional cartridge valve	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional directional	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional flow control	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional pressure control	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Servo valve	16/14/11	≤ 14/12/9	16/14/11	≤ 14/12/9	15/13/10	≤ 13/11/8
Bearings						
Ball bearing	15/13/10	≤ 15/13/10	-	-	-	-
Gearbox (industrial)	17/16/13	≤ 15/13/10	-	-	-	-
Journal bearing (high speed)	17/15/12	≤ 15/13/10	-	-	-	-
Journal bearing (low speed)	17/15/12	≤ 15/13/10	-	-	-	-
Roller bearing	16/14/11	≤ 15/13/10	-	-	-	-
Actuators						
Cylinders	17/15/12	≤ 16/14/11	16/14/11	≤ 15/13/10	15/13/10	≤ 15/13/10
Vane motors	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Axial piston motors	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	17/15/12	≤ 15/13/10
Gear motors	20/18/14	≤ 17/15/12	19/17/13	≤ 16/14/11	18/16/13	≤ 15/13/10
Radial piston motors	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Other						
Test stands	15/13/10	≤ 15/13/10	15/13/10	≤ 15/13/10	15/13/10	≤ 15/13/10
Hydrostatic transmissions	17/15/13	≤ 16/14/11	16/14/11	≤ 15/13/10	16/14/11	≤ 15/13/10
High pressure fuel injector or common fuel rail	18/16/13	≤ 16/14/11	18/16/13	≤ 15/13/10	18/16/13	≤ 15/13/10

*Depending upon system volume and severity of operating conditions a combination of filters with varying degrees of filtration efficiency might be required (I.e. pressure, return, and off-line filters) to achieve and maintain the desired fluid cleanliness.


Bearing & Component Life Extension

Improving fluid cleanliness means reduced downtime, more reliable equipment, longer fluid life, and fewer maintenance hours. In addition, it also means reduced component replacement and repair expenses.

By improving the cleanliness of your fluid by only a few ISO Codes, you can directly increase the lifespan of your components and equipment. The tables on the following page demonstrate the life extension for both roller contact bearings and hydraulic components given a reduction in ISO Codes.

How clean is your *new* oil?

As it turns out, new oil can be one of the worst sources of particulate and water contamination.

The picture above was taken from a patch test at 10x magnification on a new oil sample direct from the manufacturer and shows the level of contamination present in seemingly clean oil.

A good upper limit for new oil cleanliness is 16/14/11. However, a commonly seen ISO Code for new oil reaches an ISO Code of 25/22/19, which is not only not suitable for hydraulic or lubrication systems but can actually be a major cause of degradation and premature component failure.

Hy-Pro will help you develop a plan to achieve and maintain target fluid cleanliness. Arm yourself with the support, training, tools and practices to operate more efficiently, maximize uptime and save money.

Hydraulic Component Life Extension

Current ISO Code	New ISO Code	New ISO Code	New ISO Code	New ISO Code
	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/23/21	25/22/19	23/21/18	22/20/17
27/25/22	25/23/19	23/21/18	22/20/17	21/19/16
26/24/21	23/21/18	22/20/17	21/19/16	21/19/15
25/23/20	22/20/17	21/19/16	20/18/15	19/17/14
24/22/19	21/19/16	20/18/15	19/17/14	18/16/13
23/21/18	20/18/15	19/17/14	18/16/13	17/15/12
22/20/17	19/17/14	18/16/13	17/15/12	16/14/11
21/19/16	18/16/13	17/15/12	16/14/11	15/13/10
20/18/15	17/15/12	16/14/11	15/13/10	14/12/9
19/17/14	16/14/11	15/13/10	14/12/9	13/11/8
18/16/13	15/13/10	14/12/9	13/11/8	_
17/15/12	14/12/9	13/11/8	-	-
16/14/11	13/11/8	_	_	-
15/13/10	13/11/8	-	-	-
14/12/9	13/11/8	_	-	_

Roller Contact Bearing Life Extension

Current ISO Code	New ISO Code	New ISO Code	New ISO Code	New ISO Code
	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/23/19	22/20/17	20/18/15	19/17/14
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13
26/24/21	22/20/17	20/18/15	18/16/13	17/15/12
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11
24/22/19	20/18/15	18/16/13	16/14/11	15/13/10
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9
22/20/17	18/16/13	16/14/11	14/12/9	13/11/8
21/19/16	17/15/12	15/13/10	13/11/8	-
20/18/15	16/14/11	14/12/9	-	-
19/17/14	15/13/10	13/11/8	-	-
18/16/13	14/12/9	_	_	-
17/15/12	13/11/8	-	-	-
16/14/11	13/11/8	-	-	-
15/13/10	13/11/8	-	-	-
14/12/9	13/11/8	-	-	-

11

Fluid Life Extension

Our mission is to make our customers as efficient as possible, and we achieve that with the highest quality filtration products and total system cleanliness strategies to maximize uptime, productivity and prevent costly fluid contamination related failures. Been there. Done that. Going to do it again tomorrow. But that's not the only way we make our customers efficient. Extending the useful life of in-service fluids pays big dividends in reliability, saves money on premature fluid replacement costs, and reduces the environmental impact of industry by reducing the amount of fluids used and discarded. Enhancing reliability, saving money, and protecting the environment are not only good business, they're our responsibility. To help reduce oil usage, let's first understand why fluids are condemned and prematurely replaced.

Changing on time.

Routine oil changes based on operating hours for in service oil are common for large diesel engines, gearboxes, and mobile equipment hydraulics to name a few. For instance, one of our customers operating in the drilling industry opted for a dedicated off-line contamination solution that addressed particulate and water contamination plus a routine oil analysis instead of their normal 45 day oil change, extending their useful oil life to over a year. By implementing filtration and pro-actively monitoring their fluid, they were able to save millions of dollars per year on oil costs alone.

In a large diesel engine application, lube oil was changed every 500 hours based on OEM requirements to change once the Total Base Number had dropped to 50% of new. By installing the right off-line Hy-Pro solution, TBN was maintained in the acceptable range well beyond 2000 hours of engine operation. In this case, incorporating proper filtration enabled the customer to quadruple engine oil life, saving big money on oil. And since the units were remotely located, their savings were compounded with the reduction in maintenance and man hours.

An operator of large haul trucks now uses Hy-Pro filter carts with a particle monitor in lieu of dumping hydraulic drive oil during routine service. The systems are operating cleaner than ever and the oil is only changed after oil analysis indicates a viscosity loss or additive depletion.

Cleaning oil saves you from changing it.

Coal pulverizer gearbox oil is often filtered with a wire mesh strainer, and the oil is usually changed once it's so dirty you can't see through it. The trouble is the gearbox is on a crash course with a premature rebuild even if the oil is changed annually. The FSW (pictured below), combined with a Hy-Dry breather, maintains gearbox fluid cleanliness, avoiding a rebuild. Properly located sample ports on the FSW allow for accurate oil sampling and analysis. In hydraulic and lube systems dirt makes more dirt, but if we keep fluids clean, they can be changed based on oil condition. Commit to control gearbox contamination with Hy-Pro and greatly extend the life of in service gearbox oil.

Protect fluid additives and bottom line profitability.

When today's group II turbine oils are condemned, it means they have high varnish potential or the sacrificial antioxidant (AO) additive levels have dropped below 20% of new. SVR and FSTO turbine oil conditioning systems will remove and prevent varnish, but that's not all they do. Both systems also remove oxidation by-products on the molecular level as they are created, greatly reducing the consumption of AO additives. And by maintaining high levels of your AO additives, Hy-Pro can double or even triple your turbine oil useful life.

Fluid Life Extension

Demulsibility is life or death for oil.

And when it's gone, so is the oil. But what is demulsibility? It's the ability of the oil and water to naturally separate, and it is usually a function of the purity of the oil's base stock. Steel mill lube oils are exposed to high levels of particulate and water contamination. Wire mesh strainers are usually used for filtration, allowing ISO Codes to rise above acceptable limits. For water control, mills rely on the oil's natural demulsibility characteristic to shed water which they decant from the reservoir daily. Eventually, the stress of excessive particulate contamination and continuous operation at or above water saturation point causes the oil to

lose its demulsibility. Antiquated centrifuges don't cut it. You need a total Morgoil solution, precisely what Hy-Pro's VUD delivers. The VUD offers high efficiency particulate removal and removal of free, emulsified and dissolved water that stays ahead of ingression. That means healthy oil, no decanting, less oil down the drain, and longer Morgoil useful life.

Group II turbine lube oil demulsibility can be compromised by oxidation by-products and acids. These polar forms of contamination occur during oxidation and form bonds with water which prevent

the natural separation of oil and water. SVR and FSTO remove acids and oxidation by-products and have been proven to restore the demulsibility of turbine oil. Before you dump your turbine oil, let us test it. We might just be able to raise the dead to save your oil and your budget.

No need for EHC bleed and feed.

Steam turbines and high temp hydraulic applications run on phosphate ester fire resistant fluids which are difficult to maintain. Phosphate ester has little to no additives, but it attracts water. When exposed to water, hydrolysis creates aggressive acids. Fullers earth and Selexsorb filters are used to remove acids but they also add dissolved metal ions to the oil, causing servo valve deposits, slow response time and unit trips. Before that, the contamination causes resistivity to drop and the ISO Codes to rise even further. Then the fluid supplier will recommend a partial bleed and feed or a total flush followed by complete fluid replacement. Sounds like a complicated situation with an expensive solution that won't solve the problem. Don't buy more fluid or flush!

FSAPE is Hy-Pro's total solution for phosphate ester fluid maintenance that not only prevents deposits but excels at removing water and acid, lowering ISO Codes, removing dissolved metals and, yes, can even restore resistivity to keep all of your key fluid metrics in the green.

Don't settle for maintenance mediocrity and premature fluid replacement. Treat your fluids like an important system component and see the financial and environmental impact you can have.

Fluid Analysis Reference Guide

Industrial Oil Viscosities - ISO 3448

ISO 3448 established common viscosity classifications for industrial lubricants that are widely accepted and used across the globe. Each of your oils fall under a specific category of ISO VG classification which you can obtain from the manufacturer and are often listed on test reports you will receive from fluid sample analyses.

The table below outlines the viscosity measurements per ISO 3448 along with common minimum and optimum viscosities for various systems you'll likely find operating in your facility.

On the following page are contaminants found on fluid analysis test reports listed according to their chemical symbol (often how they'll be listed on the reports) and the various sources from which they are known to occur.

Viscosity Range	ISO 3448 Viscosity Class	Kinematic Viscosity Mid-point cSt @ 40°C	Kinematic Viscosity Minimum cSt @ 40°C	Kinematic Viscosity Maximum cSt @ 40°C
	ISO VG 32	32	28.8	35.2
	ISO VG 46	46	41.4	50.6
	ISO VG 68	68	61.2	74.8
	ISO VG 100	100	90	110
	ISO VG 150	150	135	165
	ISO VG 220	220	198	242
	ISO VG 320	320	288	352
	ISO VG 460	460	414	506
	ISO VG 680	680	612	748

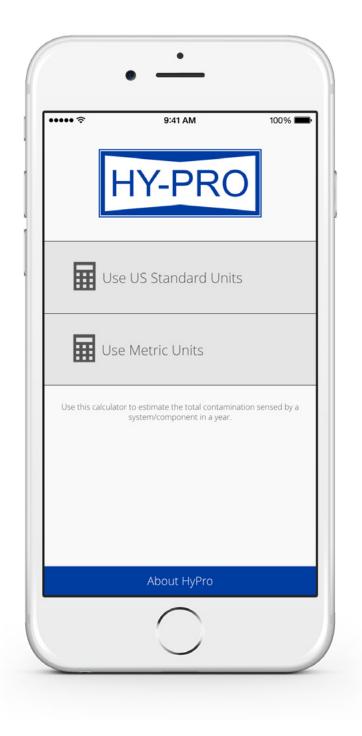
Minimum	Application	Viscosity cSt @ 40°C
Viscosities	Gearbox Reducers	33
	Gear Pumps	30
	Spherical Roller Bearings	21
	Other Roller Bearings	13
	Hydraulic Systems	13
	Plain Bearings	13
	To Support Dynamic Load	4

Optimum	Application	Viscosity cSt @ 40°C
Viscosities (at	Hydraulic Systems	25
Operating Temp)	Plain Bearings	30
	Spur & Helical Gears	40
	Hypoid Gears	60
	Worm Gears	75

Fluid Analysis Reference Guide

Oil Analysis Test Categories						
Xx Name	Wear Metals	Xx Name	Additives	Name	Contaminants	
Auminum		Motor Rotors Thrust	rs ngs les lers ngs s Bearings Housings	Ba Ca Ca Fly Fo Gr Gr Gr Pa	umina auxite atalyst oal y Ash oundry Dust ranite rease Thickener aint oad Dust	
Sb Antimony		Alloy S	Steel		eramic Products aint	
Barium		Greas	dditive e Thickener litive: Detergent			
Beryllium		Alloy S	Steel			
Boron			nt Inhibitor litive: Anti Wear		I Additive: Ext Pressure I Additive: Detergent	
Cd Cadmium		Journa Plating	al Bearings g			
Calcium		Fuller'	Nater	Oi Oi Ro Ru Sa	ard Rock Dust I Additive: Detergent I Additive: Rust Inhibitor Dad Dust Jubber Ilt Water ag	
Chromium		Sleeve	st Valves Liners Iloy Steel olers	St Ta	oller Bearings ainless Steel aper Bearings ater Treatment aint	
Cupper		Bearir Brass Bronz	Bushings les nors s	Pu St Va W W	il Pumps mp Piston & Thrust Plate eering Disc alve Train Bushings ear Plates rist Pin Bushings il Additive: Anti Wear aint	
Fe		Bearin Blocks Brake Cam S Cast Ir Cranks Cylind Discs Gears Housin	Pads Pads Shaft ron shafts lers	Va Ge Pi: Lii Oi Pc Ri Sc	ydraulic Pump anes ears stons ners il Pump ower Take Off (PTO) ngs irews aafts	

Predictor Source of Spectrometry Metals


Wear Metals

Contaminants & Abrasives

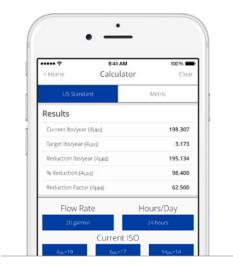
Babbitt Gasoline Additives Pb Journal Bearing (Overlay) Paint Bronze Alloy Road Dust Solder **Balancing Weights** Turbine Metallurgy Hard Water Magnesium Oil Additive: Detergent Road Dust Sea Water Fuller's Earth Oil Additive: Ext Pressure Alloy Steel Mo Ring Grease Molybdenum Hardened Steels Ni Stainless Steel Plating Nicke Oil Additive: Anti Wear Ρ Oil Additive: Ext Pressure Phosphorous **Coolant Inhibitor** Granite Κ Fly Ash Paper Dust Fuel Element Road Dust Potassium Alloy Steel Granite Si Grease Asbestos Limestone Silicon Cement Dust Oil Additive: Antifoam Synthetic Lubricant Fly Ash Road Dust Sealant Glass Bearing (Overlay) Oil Cooler (Solder) Ag Needle Bearings Wrist Pin Bushings Activated Alumina Grease Na Oil Additives Coolant Inhibitor Paper Mill Dust Dirt Sodium Fly Ash Road Salt Bearing Cage Piston Overlay Sn Solder Babbitt Bearing Flashing Tin Gas Turbine Bearings Paint Ti Turbine Blades Titanium Turbine Blades Bunker Oil V Valves Vanadium Brass Cathodic Protection Zn Plating Galvanizing Grease Zinc Oil Additive: Anti Wear

¹⁶ Filtration Contamination Tool

Available on the App Store and on Google Play[™]

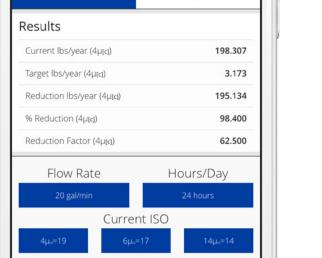
Calculate the amount of contamination that passes through your hydraulic components and bearings annually with the Hy-Pro Filtration Contamination Tool.

Just enter current and target ISO Fluid Cleanliness Codes, flow rate and daily operating hours to understand the impact of dirty vs. clean oil. Raise awareness, improve reliability, and save money by minimizing component repair and replacement costs while extending useful fluid life. Put Hy-Pro on your lube team and let us help you set a target and implement strategies to achieve and maintain your fluid cleanliness goals.

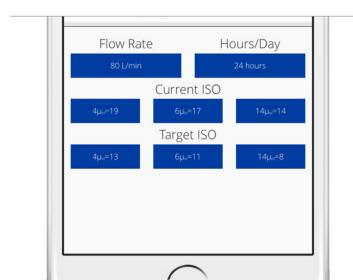

Apple, the Apple logo, iPad, and iPhone are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc. Google Play is a trademark of Google Inc.

ISO Codes, decoded.

While ISO Cleanliness Codes provide a way to gauge the level of system cleanliness, they can be difficult to interpret. The Hy-Pro Filtration Contamination Tool is an app designed to decode the mystery and provide you with a real-world figure you can actually understand.



•••• ?	9:41 AM	100%
< Home	Calculator	Clea
US Stan	dard	Metric
Results		
Current kg/yea	ar (4µ(d)	95.249
Target kg/year	(4µtci)	1.524
Reduction kg/j	vear (4µtd)	93.725
% Reduction (4	4µ(c))	98.400
Reduction Fac	tor (4µtd)	62.500
Flow F	Rate Ho	urs/Day
80 L/n		4 hours


Everywhere you are.

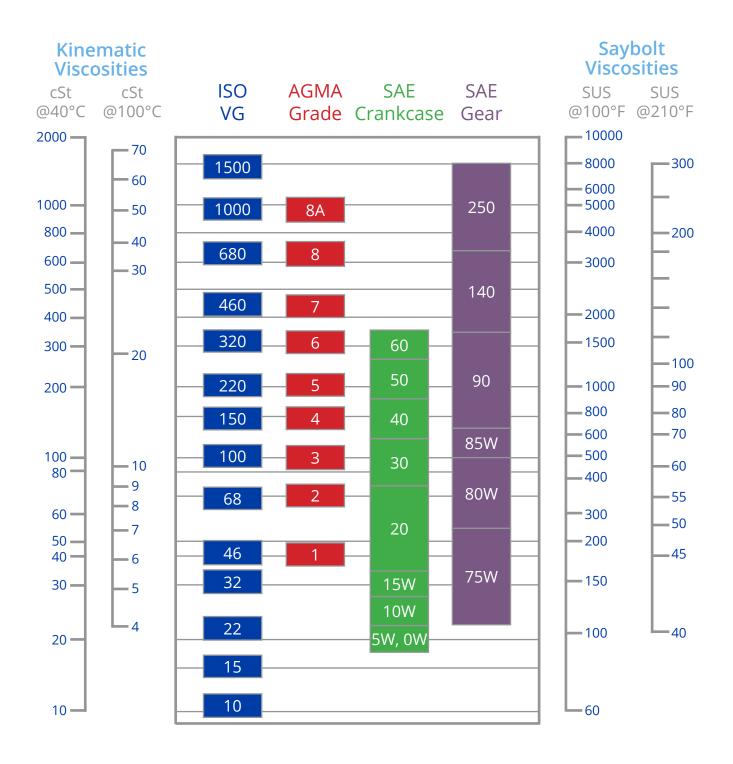
Download the Hy-Pro Filtration App to quickly calculate the effect on your system of lowering ISO Codes. And with effortless conversion between US Standard and Metric, you'll be amazed at the results of hitting target ISO Codes no matter where you are.

Driven by results.

Do you know how much abrasive dirt you are pumping through sensitive bearings, valves and injectors in a year? The Hy-Pro Filtration Contamination Tool will tell you just how much and deliver several calculations to understand the effects of lowering your ISO Codes, in clear cut and easily understood figures.

Make a difference.

The knowledge to make a difference by lowering ISO Codes is at your fingertips. Set the inputs for your system specs to see how much contamination is removed by hitting a target ISO Code.



Viscosity Reference Chart

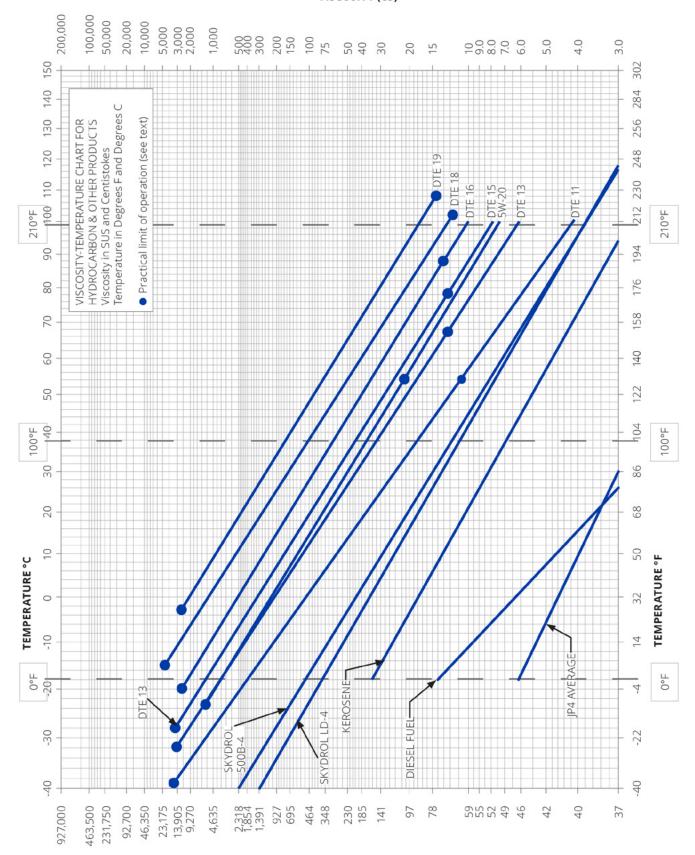
Viscosity Scale Chart

The chart below provides a quick reference for converting between the four major measures of viscosity. To determine equivalents, draw a horizontal line straight across the page at your known viscosity. All other columns that intersect the line represent equivalents.

Viscosity Reference Table

ISO/Temperature Reference

The table below gives viscosity values in cSt for known ISO VG fluids at specified temperatures using the Kinematic midpoint of each classification according to ISO 3448. Values given below are an approximation subject to variation ±10% from the midpoint value used in the calculations and are intended to be used as a reference. For exact value ranges, contact your fluid manufacturer.


To determine viscosity, locate your fluid ISO VG across the top, locate your target/specified temperature in the two left hand columns, and the cell in which the respective column and row intersect is the approximate viscosity value.

Temp °F	Temp °C	ISO 22	ISO 32	ISO 46	ISO 68	ISO 100	ISO 150	ISO 220	ISO 320	ISO 460	ISO 680	ISO 1000	ISO 1500
14	-10	314.8	610.2	1129.7	2284.5	4492.7	9276.7	18565.4	36300.1	69774.7	141088.3	283473	593291
23	-5	217.6	405	724	1400.8	2645.9	5225.3	10012.8	18789.7	34686.9	67151.4	129188.1	258112
32	0	154.9	277.7	480.7	893.1	1625.3	3080.7	5672.1	10248.5	18228.2	33901.4	62664.6	119962.4
41	5	113.2	196.2	329.5	589.8	1037.1	1892.9	3359	5860.8	10072.2	18052.2	32160.4	59188.2
50	10	84.8	142.3	232.5	402.1	685	1207.3	2070.8	3498.3	5824.5	10088.3	17370.7	30827.6
59	15	64.8	105.7	168.4	282.2	466.8	796.5	1324.1	2171	3510	5890.3	9827.9	16865
68	20	50.6	80.3	124.9	203.3	327.2	542	875.1	1395.7	2196.1	3579	5799.8	9647.9
77	25	40.2	62.2	94.7	150	235.4	379.2	596.1	926.6	1421.7	2254.9	3556.7	5748.4
86	30	32.4	49.1	73.2	113	173.3	272.2	417.3	633.4	949.5	1468.4	2258.8	3554.4
95	35	26.5	39.3	57.5	86.9	130.4	199.9	299.6	444.8	652.4	985.6	1481.1	2273.5
104	40	22	32	46	68	100	150	220	320	460	680	1000	1500
113	45	18.5	26.4	37.3	54.1	78.1	114.7	165	235.4	332.2	481.2	693.5	1018.1
122	50	15.7	22	30.7	43.7	62	89.3	126.1	176.8	245.1	348.4	492.8	709.2
131	55	13.4	18.6	25.5	35.8	49.9	70.7	98.1	135.3	184.5	257.7	358.2	506
140	60	11.6	15.9	21.5	29.6	40.7	56.8	77.5	105.3	141.5	194.4	265.8	369
149	65	10.1	13.7	18.3	24.8	33.7	46.2	62.2	83.3	110.3	149.3	201	274.6
158	70	8.9	11.9	15.7	21	28.2	38.1	50.6	66.8	87.3	116.5	154.7	208.1
167	75	7.9	10.4	13.6	18	23.8	31.8	41.6	54.3	70.2	92.4	121	160.5
176	80	7	9.2	11.9	15.5	20.3	26.8	34.7	44.7	57.1	74.2	96	125.7
185	85	6.3	8.1	10.5	13.5	17.5	22.8	29.2	37.2	47	60.4	77.3	99.9
194	90	5.7	7.3	9.3	11.9	15.2	19.6	24.8	31.3	39.2	49.8	63	80.5
203	95	5.2	6.5	8.3	10.5	13.3	17	21.3	26.6	33	41.5	51.9	65.7
212	100	4.7	5.9	7.4	9.3	11.7	14.8	18.4	22.8	28	34.9	43.3	54.2
221	105	4.3	5.4	6.7	8.3	10.4	13	16	19.7	24	29.6	36.5	45.2
230	110	3.9	4.9	6	7.5	9.3	11.5	14.1	17.2	20.7	25.4	31	38.1
239	115	3.6	4.5	5.5	6.8	8.3	10.2	12.4	15	18.1	21.9	26.6	32.4
248	120	3.4	4.1	5	6.1	7.5	9.2	11.1	13.3	15.8	19.1	22.9	27.7
257	125	3.1	3.8	4.6	5.6	6.8	8.3	9.9	11.8	14	16.7	20	24
266	130	2.9	3.5	4.3	5.1	6.2	7.5	8.9	10.5	12.4	14.8	17.5	20.9
275	135	2.7	3.3	3.9	4.7	5.6	6.8	8	9.5	11.1	13.1	15.4	18.3
284	140	2.6	3	3.6	4.3	5.2	6.2	7.3	8.5	9.9	11.7	13.7	16.1
293	145	2.4	2.8	3.4	4	4.8	5.7	6.6	7.7	9	10.5	12.2	14.3
302	150	2.3	2.7	3.2	3.7	4.4	5.2	6.1	7.1	8.1	9.5	11	12.8

Viscosity Reference Charts

VISCOSITY (CS)

20

VISCOSITY (SUS)

Viscosity Reference Charts _1

VISCOSITY (CS) 200,000 100,000 50,000 20,000 10,000 5,000 3,000 2,000 1,000 500 400 200 150 75 50 30 30 30 30 10 9.0 7.0 6.0 3.0 5.0 4.0 20 15 302 150 140 284 H - 83282(Temperature in Degrees F and Degrees C Practical limit of operation (see text) 130 256 VISCOSITY-TEMPERATURE CHART FOR HYDROCARBON & OTHER PRODUCTS DTE24 DTE25 DTE26 248 120 Viscosity in SUS and Centistokes 212 230 110 SO100 S0150 ISO68 IS046 IS032(IS022(15037 IS032 **IS022** 1100 210°F 210°F IS01 194 60 176 80 158 70 140 60 122 50 104 100°F 40 100°F 30 86 20 68 10 50 40 GEAR OIL TEMPERATURE °F **TEMPERATURE °C** 32 0 10 4 0°F -20|-J°0 4 MIL - H - 560(-22 -30 40W-30W-20W-8 Ş 40 40 927,000 163,500 13,905 4,635 2,318 1,854 1,391 231,750 92,700 46,350 23,175 9,270 927 695 464 348 230 97 78 555 552 49 46 42 40 37 141

VISCOSITY (SUS)

Filter Assembly Sizing

Filter Assembly Sizing Guidelines

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 32 cSt (150 SUS) viscosity and 0.86 fluid specific gravity. Use the following steps to calculate clean element assembly pressure drop.

Calculate ∆P	Using Saybolt Universal Seconds (SUS)								
coefficient for	ΔP Coefficient		Actual Ope	erating Viscosity ¹ (SUS)	×	Actual Specific Gravity			
actual viscosity	AP Coefficient	_		150		0.86			
	Using Centistoke	s (cSt)							
	∆P Coefficient	=	Actual Op	erating Viscosity ¹ (cSt)	- × _	Actual Specific Gravity			
			32		~	0.86			
Calculate actual clean filter assembly ΔP at both operating and cold start viscosity	Actual Assembly Clean ΔΡ	=	Flow Rate X	ΔP Coefficient (from calculation above)	Х	Assembly ∆P Factor (from sizing table)			

Sizing recommendations to optimize performance and permit future flexibility	۰	To avoid or minimize bypass during cold start the actual assembly clean ΔP calculation should be repeated for start-up conditions if cold starts are frequent.
	۰	Actual assembly clean ΔP should not exceed 10% of bypass ΔP gauge/indicator set point at normal operating viscosity.
	0	If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean ΔP or filter element life.
	•	Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
	٠	When using water glycol or other specified synthetics we recommend

 When using water glycol or other specified synthetics increasing the filter assembly by 1~2 sizes.

Assembly Sizing Example

Sizing Example:

Replacing existing paper machine lube oil duplex with DLFM4 (4x4) duplex with HP107 series elements. The details of the system are listed below along with a breakdown of the steps to calculate the Actual Assembly Clean ΔP.

Oil:	PM220 (ISO VG 220)	Operating Temp:	125°F
Specific Gravity:	0.86	Flow Rate:	150 gpm
Assembly:	DLFM4 (4x4)	Element:	HP107L36-6MB
Assembly ΔP Factor ² :	0.0084 psid/gpm	Actual Viscosity ¹ :	120 cSt @ 125°F

Calculate ∆P	Using Centistokes (cSt)									
coefficient for	∆P Coefficient	=	Actual Oper	rating Viscosity ¹ (cSt)	Х	Actual Specific Gravity				
actual viscosity	Ar coencient	_		32	~	0.86				
	ΔP Coefficient	=		120	X	0.86				
	AP Coefficient	_		32	~	0.86				
	ΔP Coefficient		3.75							
Calculate actual clean filter assembly ∆P at both operating and cold start viscosity	Actual Assembly Clean ∆P	=	Flow Rate	X ΔP Coefficient	Х	Assembly ∆P Factor (from sizing table)¹				
	Actual Assembly Clean ΔP	=	150 gpm	X 3.75	Х	0.0084 psid/gpm				
	Actual Assembly Clean ∆P	=	4.7 psid							

 1 Actual viscosity conversion information available on page 22. 2 Assembly clean element ΔP factor can be found on the respective individual assembly data sheets.

Assembly Sizing Example 24

Sizing Example:

Installing an MF3 housing with 16" length code, 50 psid integral bypass and 12M media. The details of the system are listed below along with a breakdown of the steps to calculate the Actual Assembly Clean ΔP .

Oil:	AW32 (ISO VG 32)			Operating Temp:			110°F/50°F cold start		
Specific Gravity:	0.86			Flow	Rate:		22 gpm		
Assembly:	MF3 L16			Element:			HP60L16-12MB		
Assembly ΔP Factor ² :	0.134 psid/gpm			Actua	al Viscosity ¹ :		25 cSt @ 110°F 140 cSt @ 50°F Cold Start		
	Lleing Contistelys								
Calculate ΔP coefficient for	Using Centistokes	(LSL)	A stual One	ratio			Actual Considia Crowity		
actual viscosity	ΔP Coefficient	=			g Viscosity ¹ (cSt)	Х	Actual Specific Gravity		
				32	2		0.86		
	@ Operating Tem	perature			-		0.00		
	∆P Coefficient	=		25		Х	0.86		
				32	2		0.86		
	ΔP Coefficient	=	0.78						
	Cold Start								
	ΔP Coefficient = -		140			Х	0.86		
				32		~	0.86		
	ΔP Coefficient	=	4.375						
Calculate actual	@ Operating Tem	perature							
clean filter assembly ∆P at	Actual Assembly Clean ΔP	=	Flow Rate	Х	ΔP Coefficient	Х	Assembly ΔP Factor (from sizing table) ¹		
both operating and cold start viscosity	Actual Assembly Clean ΔP	=	22 gpm	Х	0.78	Х	0.134 psid/gpm		
	Actual Assembly Clean ΔP	=	2.29 psid						
	Cold Start								
	Actual Assembly Clean ΔP	=	22 gpm	Х	4.375	Х	0.134		
	Actual Assembly Clean ΔP	=	12.9 psid						

⁻ Yactual viscosity conversion information available on page 22. ²Assembly clean element ΔP factor can be found on the respective individual assembly data sheets.

Assembly Sizing Example

Sizing Example:

Fitting an FSL2 off-line filtration system to a gearbox using ISO VG 460 gear lubricant. The details of the system are listed below along with a breakdown of the steps to calculate the Actual Assembly Clean ΔP.

Oil:	Gear lube 460 (ISO VG 460)			Operating Temp:			48°C / 16°C cold start	
Specific Gravity:	0.90			Flow Rate:			19 lpm	
Assembly:	FSL5 (use LF18"	3M assei	mbly)	Element:			HP107L18-3MB	
Assembly ΔP Factor ² :	0.0007 bard/lpn	1		Actua	l Viscosity ¹ :		280 cSt @ 48°C 2500 cSt @ 16°C Cold Start	
 Calculate ΔP	Using Centistokes	(cSt)						
coefficient for			Actual Op	erating	viscosity ¹ (cSt)		Actual Specific Gravity	
actual viscosity	ΔP Coefficient	=		32	2	Х	0.86	
	@ Operating Tem	peratu	re	28	0		0.90	
	∆P Coefficient	=		280 32		Х	0.86	
	ΔP Coefficient	=	8.75					
	Cold Start			2500			0.90	
	ΔP Coefficient	=		32		Х	0.86	
	ΔP Coefficient	=	81.79					
Calculate actual	@ Operating Tem	peratu	re					
clean filter assembly ∆P at	Actual Assembly Clean ΔP	=	Flow Rate	Х	ΔP Coefficient	Х	Assembly ∆P Factor (from sizing table)¹	
both operating and cold start viscosity	Actual Assembly Clean ΔP	=	19 lpm	Х	8.75	Х	0.0007 bard/lpm	
	Actual Assembly Clean ΔP	=	0.116 bar	d				
	Cold Start							
	Actual Assembly Clean ΔP	=	19 lpm	Х	81.79	Х	0.0007 bard/lpm	
	Actual Assembly Clean ΔP	=	1.08 bar	d				

 1 Actual viscosity conversion information available on page 22. 2 Assembly clean element ΔP factor can be found on the respective individual assembly data sheets.

DFE Dynamic Filter Efficiency

What is DFE?

DFE matches filter testing with real-life conditions

All hydraulic and lube systems have a critical contamination tolerance level that is often defined by, but not limited to, the most sensitive system component such as servo valves or high speed journal bearings. Defining the ISO fluid cleanliness code upper limit is a function of component sensitivity, safety, system criticality and ultimately getting the most out of hydraulic and lube assets.

Filters remove the particulate contamination that enters a system or is generated by the system as it operates. All filters are subjected to some form of system dynamics: hydraulic filters encounter frequent and rapid changes in flow rate when valves shift, cylinders unload and pump output changes; lube filters experience dynamic conditions during start up and shut down. Filters validated only to current ISO testing standards don't perform as expected when subjected to the demands of real world dynamic operating systems.

A filter is not a black hole. Two key characteristics of filter performance are capture efficiency and retention efficiency. Capture efficiency can be thought of simply as how effectively a filter captures particles while retention efficiency is a measure of how effectively that filter retains the particles it has captured. A filter is not a black hole, and its performance must not be based solely on how efficiently it captures particles. If not properly designed and applied, a filter can become one of the most damaging sources of contamination in a system if it releases previously captured particles when challenged with dynamic conditions.

The Dynamic Filter Efficiency Test (DFE) is the evolution of standard hydraulic and lube filter performance testing. DFE goes further than current industry standards to quantify capture and retention efficiency in real time by inducing dynamic duty cycles, measuring real- time performance during dynamic changes and the filters ability to retain particles. DFE testing is the method for predicting worst case fluid cleanliness along with average fluid cleanliness. The DFE test method was pioneered in 1998 during a joint effort between Scientific Services Inc (SSI) and Hy-Pro Filtration.

²⁸ Dynamic Filter Efficiency Current Filter Performance Testing Methods

To understand the need for DFE it is important to understand how filters are currently tested and validated. Manufacturers use the industry standard ISO16889 multi-pass test to rate filter efficiency and dirt holding capacity of filter elements under ideal lab conditions.

Figure 1 depicts the test circuit where hydraulic fluid is circulated at a constant flow rate in a closed loop system with on-line particle counters before and after the test filter. Contaminated fluid is added to the system at a constant rate. Small amounts of fluid are removed before and after the filter for particle counting to calculate the filter efficiency (capture). The capture efficiency is expressed as the Filtration Ratio (Beta) which is the relationship between the number of particles greater than and equal to a specified size $(X\mu_{IG})$ counted before and after the filter. In real world terms this test is the equivalent of testing a filter in an off-line kidney loop rather than replicating an actual hydraulic or lube system. It's basically a filter cart test.

Figure 1: ISO16889 Multi-Pass Test

Filtration Ratio (Beta) per ISO16889:

 $\beta x_{[c]} = \frac{\text{quantity particles} \ge X\mu_{[c]} \text{ upstream of filter}}{\text{quantity particles} \ge X\mu_{[c]} \text{ downstream of filter}}$

 Example:
 $β7_{[c]} = 600/4 = 150$

 Filtration Ratio (Beta):
 $β7_{[c]} = 150$

In the example, 600 particles greater than or equal to $7\mu_{c}$ were counted upstream of the filter and 4 were counted downstream. This Filtration Ratio is expressed as "Beta 7_{c} = 150". The c is referred to as "sub c". The sub c is used to differentiate between multi-pass tests run per the current ISO16889 multi-pass test with new particle counter calibration per ISO11171 from ISO4572. Filtration Ratio expressed or written without the "sub c" refers to the antiquated ISO4572 multi-pass test superseded by ISO16889. The efficiency may also be expressed as a percentage by converting the Filtration Ratio:

Efficiency of
$$\beta X_{[C]} = \frac{(\beta - 1)}{\beta} \times 100$$

Example: Efficiency % of $\beta 7_{[c]} = 150 = (150 - 1)/150 \times 100$
Efficiency %: 99.33%

Using our Beta Ratio found in the first example, we can calculate that the test filter is 99.33% efficient at capturing particles $7\mu_{fcl}$ and larger.

Dynamic Filter Efficiency The DFE Multi-Pass Testing Method

DFE multi-pass enhances the industry standard by inducing dynamic conditions (duty cycle) and measuring the effects of the duty cycle in real time instead of looking at normalized numbers over a time weighted average. DFE also quantifies retention efficiency in real time in order to identify a filter's ability to properly retain previously captured contaminant and the degree to which it unloads captured contaminant back into the system. For an easy comparison, think of it as a sneeze that releases a rush of contamination to levels that are well above the upper limit of fluid cleanliness then fades as the flow rate normalizes.

In the DFE test, flow rate is truly dynamic in that rapid changes can be made while maintaining full system flow through the test filter. The raw data is continuously collected and organized so filter efficiency can be reported for variable flow conditions including time weighted averages and isolated moments to reveal true filter performance during hydraulic stress conditions – exactly when you need the filter to perform at its best.

At the end of the initial test when the filter element is loaded with contaminant, it is subjected to a restart test in which the flow goes from zero to max flow in milliseconds, replicating a hydraulic or lube system restart. Through rapid particle counting with precise control, this dynamic flow change allows Hy-Pro to analyze the amount of particles released and understand both the capture and retention efficiencies of each and every filter tested.

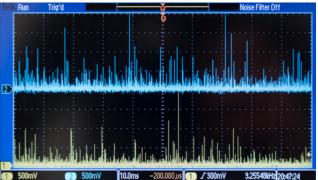
The DFE Testing Method Quantifying Contaminant Capture and Retention

Figure 2 compares the performance of two identical high efficiency glass media filter elements, one tested to ISO16889 multi-pass and the other to the DFE multi-pass method. The graph expresses the actual number of particles $6\mu_{c}$ and larger counted downstream of the filter element from several data points during the tests.

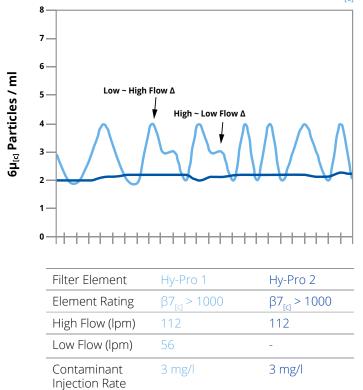
Filter A2 was tested at a constant flow rate and maintained a steady efficiency throughout the test. Filter A1 was cycled between max rated flow rate and half of rated flow with a duty cycle consistent with that of a hydraulic system. The downstream counts for Filter A1 varied and were highest during changes from low flow to high flow. The peaks represent counts taken during flow change and the valleys represent counts taken after each flow change. The alternating high peaks represent counts taken during changes from low flow to high flow. As the amount of contaminant captured by Filter A1 increased, the downstream counts increased most dramatically during the flow changes from low to high. Filter element A1, not properly designed to retain previously captured contaminant during dynamic system conditions, can become a dangerous source of contamination as it captures and then releases concentrated clouds of contaminated fluid.

Figure 3 shows the particle counter raw data (topupstream, bottom-downstream) for Element A1 before a change from low flow to high flow and Figure 4 shows the particle counter data for Element A1 during a change from low flow to high flow. The downstream particle count trace during the change reveals a much higher quantity of smaller particles and larger particles that did not pass the element before the dynamic system condition. This phenomenon can best be described as "contaminant unloading". As the filter element captures more dirt, greater amounts may be released back into the system that it is installed to protect when the element is subjected to a dynamic flow condition and change in differential pressure across the element. Unloading may also occur when the flow rate changes from high flow to low flow, represented by the alternating smaller peaks in Figure 3. The filter element typically recovers shortly after the dynamic condition, but highly contaminated clouds of fluid from contaminant unloading can cause severe component damage and unreliable system performance.

Figure 2: Particle Counts Downstream of Filter 6µ_{rel}



Injection Rate



The DFE Testing Method Quantifying Contaminant Capture and Retention

Figure 5 compares the performance of two identical Hy-Pro filter elements designed and developed per the DFE multi-pass test method. All Hy-Pro elements that utilize the G8 or higher media carry the Hy-Pro DFE rating.

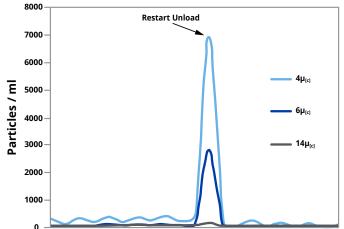
Although the contaminant unloading effect is still evident, the unloading is insignificant as filter element Hy-Pro 1, tested per DFE, performed true to its ISO16889 multi-pass rating of $\beta 7_{c} > 1000$ even during dynamic flow conditions.

Figure 6 compares the performance of filter Element A1 and Hy-Pro 1 (DFE rated). Both elements demonstrated excellent particle capture performance during the ISO16889 and DFE testing. The DFE rated Hy-Pro element yielded much more stable particle counts downstream of the element and more consistent efficiency during the dynamic flow conditions. Improving particle retention results in more predictable fluid cleanliness levels and a system that can continually operate below the ISO cleanliness code limit.

Figure 5: Particle Counts Downstream of Filter 6µ_{rel}

Filter Element	Element 1	Hy-Pro 1
Element Rating	β7 _[c] > 1000	β7 _[c] > 1000
High Flow (lpm)	112	112
Low Flow (lpm)	56	56
Contaminant Injection Rate	3 mg/l	3 mg/l

Figure 6: Particle Counts Downstream of Filter 6µ_{rel}


The DFE Testing Method DFE Multi-Pass: Cold Start Contamination Retention

Once the element has captured enough contaminant to reach approximately 90% of the terminal ΔP (dirty filter indicator setting), the main flow goes to zero and the injection system is turned off for a short dwell period. Then main flow goes to maximum element rated flow accompanied by real time particle count to measure retention efficiency of the contaminant loaded element. The dynamic duty cycle is repeated to further monitor the retention efficiency of the filter element after a restart.

Figure 7 shows the performance of an element that was subjected to the DFE restart test. During the restart, particle counts after the filter increased by a factor of 20 on the $6\mu_{rcl}$ channel, and the ISO Codes increased by 4 codes on the $4\mu_{rd}$ and $6\mu_{rd}$ channels. During the

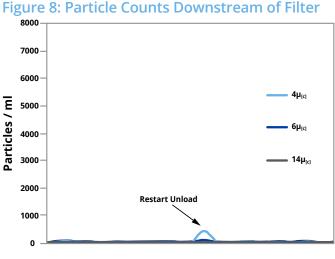

restart test, there is no contaminant being injected so any particles measured were released by the element or were already in the test loop. The temporary high contamination load in the fluid can pass through the sensitive components or bearings that the filter is charged with protecting if it can't retain the dirt.

Figure 8 shows the performance of a Hy-Pro element. The unloading is evident in the DFE rated Hy-Pro element, but the effect is greatly reduced. The competitor element A3 (Figure 7) unloaded 84 times more particles $6\mu_{\text{rel}}$ and larger than Hy-Pro, and 14 times more particles $4\mu_{rel}$ and larger. The DFE rated Hy-Pro element had much higher retention efficiency than the filter designed and validated only to ISO16889 multi-pass.

Figure 7: Particle Counts Downstream of Filter

Downstream Element A3	Before Restart	During Restart
4µ _[C] particles/ml	429	6973
6μ _[C] particles/ml	136	2802
14µ _[C] particles/ml	25	139
ISO Code per ISO4406:1999	16/14/12	20/18/14

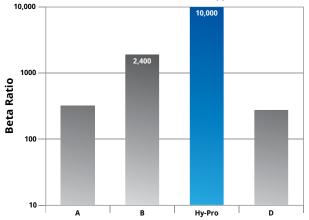
Downstream Element Hy-Pro 3	Before Restart	During Restart
$4\mu_{C}$ particles/ml	93	489
6µ _[C] particles/ml	5	33
$14\mu_{\text{[C]}}$ particles/ml	0	0
ISO Code per ISO4406:1999	14/9/0	16/12/0

HY-PRO

The DFE Testing Method ³³ DFE and ISO 16889 Multi-Pass Test Results Comparison

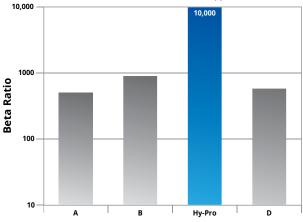
Figure 9 shows the performance of like elements produced by three different manufacturers that were tested to ISO 16889. The results were expressed as a time weighted beta ratio. Element B had a better capture efficiency than the Hy-Pro element in the constant flow test environment of ISO 16889. All of the elements tested were true to their Beta Ratio of $\beta 7_{rd} > 1000$.

Figure 10 shows the time weighted performance of the like elements tested to DFE multi-pass to illustrate the performance differences between DFE and ISO16889.


In Figure 11 the particle counts taken during flow change have been isolated to measure efficiency during dynamic flow. Since the DFE test has shown that filter element performance is at its worst during flow changes, isolating those sequences can help predict performance in dynamic conditions, and it is with this graph that we see how overall filter performance changes.

Element B had a beta ratio in excess of $\beta7_{cc} > 2000$ when tested to ISO16889 (Figure 9). However, Figure 11 shows the average beta ratio of Element B during variable flow to be $\beta7_{cc} > 500$. The Hy-Pro element beta ratio was in excess of $\beta7_{cc} > 10,000$, true to rating even in the dynamic test. The Hy-Pro performance in Figure 11 illustrates why Hy-Pro is committed to the DFE test method for design and development. DFE is Hy-Pro's competitive advantage.

Relying solely on ISO16889 to predict how filter elements will perform in a dynamic system is like taking a boat into rough seas that has never been in the water. The current industry standard test for hydraulic and lube filter performance (ISO 16889) is a good tool for predicting performance of off-line filters and circulating systems, but it does not accurately represent the stress of a hydraulic circuit with dynamic flow conditions or a lube system cold start. Without DFE testing, it is difficult to truly predict actual filter performance in a dynamic system.


Figure 9: ISO 16889 Multi-Pass

Time Weighted Beta Ratio Comparison for $\beta 7 \mu_{rcl}$ >1000 Filter Element

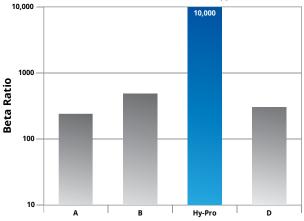

Figure 10: DFE Multi-Pass

Figure 11: Real Time Flow Change

Beta Ratio Comparison per DFE Multi-Pass for $\beta7\mu_{ICI}{>}1000$ Filter Element

³⁴ Upgrading from Cellulose to Glass

First, understand media efficiencies.

When a filter element is rated at a particular micron size, it is said to remove particles of that particular size and larger from the fluids it is filtering. However, filter elements of different media with the same micron rating can have substantially different filtration efficiency. Filter efficiency is calculated by taking the ratio of particles upstream of (before) the filter to particles downstream of (after) the filter. The higher the ratio, the more efficient the filter and the less particles it allows to pass. There are two distinct ratings of filter efficiency, classified as nominal and absolute.

Nominal Efficiency

Nominal ratings refer to a degree of filtration at a particular micron by weight of solid particles. Filters rated as nominal (we're looking at you cellulose) have no maximum pore size, meaning while they may remove some 10 micron particles, they can still allow larger particles such as 200 micron to pass through and devastate components in the system.

Absolute Efficiency

Absolute ratings, such as most glass media filter elements are classified under, derive their value from the largest size particle which can pass through the pores of the media. Along with much greater efficiencies, glass elements have superior fluid compatibility versus cellulose with hydraulic fluids, synthetics, solvents, and high water based fluids.

Cellulose vs Glass Elements

Organic cellulose fibers can be unpredictable in size and effective useful life, while inorganic glass fibers are much more uniform in diameter and much smaller than cellulose fibers as seen in the images to the right (Figures 2 and 3).

The illustrated elements on the following page provide a visual representation of the efficiencies of both a cellulose and glass element at their respective efficiency ratings.

The cellulose element would typically achieve a code no better than 22/20/17. Runaway contamination levels at $4\mu_{c}$ and $6\mu_{c}$ are very common when cellulose media is applied in which a high population of fine particles exponentially generate more particles in a chain reaction of internally generated contaminants. The illustrated glass element would typically deliver an ISO Fluid Cleanliness Code of 18/15/8 to 15/13/9 or better depending upon the system conditions and ingression rate.

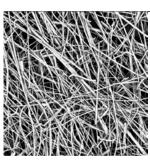
Upgrading to Hy-Pro G8 Dualglass

When upgrading to an absolute efficiency glass media element, the system cleanliness must be stabilized. During this clean-up period the glass element halts the runaway contamination as the ISO cleanliness codes are brought into the target cleanliness range. As the glass element removes years of accumulated fine particles, the element life might be temporarily short.

Once the system is clean the glass element can last up to 4~5 times longer than the cellulose element that was upgraded as shown in Figure 4.

Figure 1: Filter Efficiency Equation

 $\beta x_{[c]} = \frac{\text{quantity particles} \ge X\mu_{[c]} \text{ upstream of filter}}{\text{quantity particles} \ge X\mu_{[c]} \text{ downstream of filter}}$


Figure 2: Cellulose Filter Media

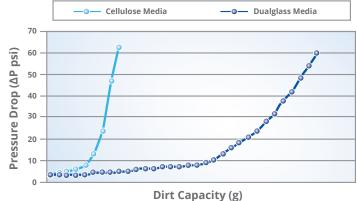

Cellulose fibers at 400x magnification

Figure 3: Glass Filter Media

Figure 4: Element Lifespan

Cellulose: $\beta 10\mu_{[C]} = 2$

Dirt in

50,000 particles $10\mu_{cc}$ or larger

 $= \frac{50,000 \text{ Particles In}}{25,000 \text{ Particles Out}}$

Dirt out

25,000 particles $10\mu_{c}$ or larger

50% efficiency

Glass: β10μ_[C]= 1000

Dirt in 50,000 particles 10µ_{rcl} or larger

= $\frac{50,000 \text{ Particles In}}{50 \text{ Particles Out}}$

Dirt out 50 particles 10µ_{rcl} or larger

99.9% efficiency

Lube Design Low AP Optimized Glass Filter Media

A modified DFE rated glass media option for high flow lube systems with low ΔP alarm (1 bard, ~15 psid). Also ideal for undersized hydraulic filter assemblies or upgrading from wire mesh to high efficiency glass media.

hyprofiltration.com/LubeDesign

Lube Applications

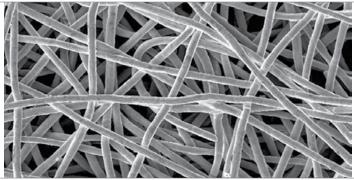
High speed bearing lube oil systems in paper mills typically use higher viscosity ISO220 and ISO320 oils. A high clean element ΔP (i.e. 0.5 bard / 7psid) relative to a low ΔP indicator alarm setting (i.e. 1.25 bard / 18 psid) leads to reduced filter element loading and short element life. This type of condition can occur when changing to heavier oil or upgrading filter element efficiency in search of lower operating ISO Codes. Hy-Pro H and L media codes are designed specifically to optimize element life while maintaining filter efficiencies in these types of applications.

The perfect media for your application.

Hy-Pro DFE Rated *M media code is the Hy-Pro standard and is ideal for 99.99% of all hydraulic, lube and diesel applications. Contact Hy-Pro for selection and part numbers for H and L low Δ P modified media options.

Original HC8314FCP39H Hy-Pro Glass Media HP8314L39-3MB Hy-Pro Lube Media HP8314L39-3LB

Dynafuzz Stainless Fiber Media


Filter Elements for Power Generation and other fire resistant fluid applications.

Dynafuzz is ideal for long term exposure to aggressive fluids such as phosphate ester, Skydrol, Deionized water, and high temperature applications where traditional glass media binders can degrade leading to media migration.

hyprofiltration.com/Dynafuzz

Dynafuzz options:

Dynafuzz media is available for all Hy-Pro high collapse filter elements that are found in turbine EHC, primary metal, and other hydraulic control applications where fire resistant fluids are used. For the most critical installations (nuclear power), optional 100% bubble point integrity testing and validation is available. Part number modifier example, contact Hy-Pro for specifications and pricing:

OriginalHy-Pro Glass MediaHC9401FDP13ZYGEHP41L13-2MV

Hy-Pro Dynafuzz Media HP41L13-3SFV

Intuitive Upgrade

The PFQ290218V Westinghouse EHC upgrade features a 3SF Dynafuzz media element ($\beta_{f_{[c]}} > 1000$) in place of a 10 micron glass media element. The bowl extension with top loading element service minimizes mess and accepts a double length element allowing the use of higher efficiency media and extended element life.

Advanced media solutions.

EHC systems using phosphate ester fluids (FRFs) develop aggressive acids when exposed to water. The acid attacks glass fiber media binders of critical pump discharge and last chance servo pilot filters. Lower filter efficiency, media migration and fiber shedding into the servo screens can result causing servo valve malfunction. Dynafuzz media is DFE rated to provide the same low operating ISO Codes and contaminant retention you expect with the fluid compatibility you need.

NON-Spark Discharge Filter Elements

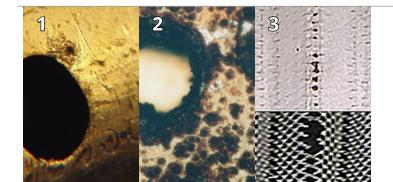
Hy-Pro NSD element and media technology is optimized to prevent spark discharge and minimize potential energy in bearing lubrication and hydraulic control systems.

NSD elements prevent oil degradation caused by thermal events associated with element spark discharge to extend fluid life and prevent antioxidant additive depletion.

hyprofiltration.com/NSD

Prevent varnish; promote efficiency.

With Hy-Pro NSD elements, any reduction in thermal sparking events and tribo-electric effect will have a positive impact by decelerating anti-oxidant additive depletion and extending useful fluid life. Field test data has shown that Hy-Pro NSD elements may even reduce or stabilize varnish potential values by preventing further degradation from sparking and collecting some insoluble oxidation by-products.


Cleaner fluid without sparking.

For some, the answer to preventing element sparking and high potential energy is to use coarse strainer type filters (Stat-Free) in the main bearing lube filter duplex. Although this may prevent sparking it renders the main bearing lube filter assembly useless in preventing catastrophic bearing failure due to contamination. Independent lab analysis proves that even Hy-Pro high efficiency 3 micron absolute ($\beta 5_{rcl} > 1000$) NSD elements are resistant to spark discharge.

Eliminate damage caused by sparking.

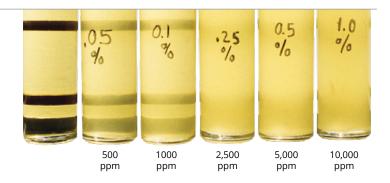
As fluid passes through the typical tortuous filter media fiber matrix, turbulence increases which results in thermal events as the fluid layers shear, creating static accumulation on elements that can lead to high voltage spark discharge from media to support tube. Photos 1 and 2 show evidence of sparking on the filter element support tube (pitting and burning), and photo 3 shows filter media and support mesh from a lube filter element with spark discharge burn damage.

Water Removal G8 Dualglass Media with Water Removal

Media code "A" specifies G8 Dualglass media copleated with water removal scrim to produce a filter that can remove water while maintaining βx_{rcl} =1000 efficiency down to 1µ/2.5µ_{rcl}. Available for all Spin-On and cartridge style filter elements.

HY-PRO

hyprofiltration.com/WaterRemoval



Remove water: protect your system.

Emulsified water, very small droplets of water dispersed through oil, will often cause oil to appear cloudy or milky along with increasing its viscosity. Hy-Pro Water Removal filter elements pull free and emulsified water from your industrial oils to leave them clean and dry and ensure your system is operating to its peak efficiency.

Dual purpose contamination removal

Hy-Pro filter elements with water removal media combine the best of particulate and water removal and can bring high water counts down and prevent any of the gel particles from being released back into the system, all while maintaining our $\beta x_{cl} = 1000$ particulate removal efficiency you've already come to love. Water removal is available with any of our glass media selections from 1µ to 40µ.

Hy-Pro Element	Water Capacity
HP75L8-*AB	24 oz 0.7 liters
HP107L36-*AB	177 oz 5.2 liters
HP8314L39-*AB	182 oz 5.4 liters
HP60L8-*AB	12 oz 0.4 liters

Water Capacity by Series

Water PPM ~ Ounce Conversion

Moisture (PPM) x Fluid Volume (Gal) x 0.0001279 = oz of Water Example:

2,500 ppm x 5,000 gal reservoir x 0.0001279 = 1598.75 oz water

Turbo-TOC* Upgrades

Hy-Pro Filter Element Upgrades for Kaydon Turbo-TOC* Conditioning Skid Element Sets

Complete filter element sets including pre-filter, coalesce, separator and post-filter polishing elements.

hyprofiltration.com/TurboToc

*Turbo-TOC is a registered trademark of Kaydon Corporation.

Elements that go beyond industry standard.

DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under all circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh.

Water Phase 1: Coalesce.

Stage 1 in removing the free and emulsified water is to coalesce the water into larger droplets until large enough to drop out of the oil. The Hy-Pro HPQK2G coalesce utilizes all synthetic media and non-woven materials providing great compatibility even over long term exposure to water.

Water Phase 2: Separator + Final Polishing.

The HPQK3P-3M upgrade is a dual functioning element providing the final stage of water separation with a final pass of particulate removal. The TEFLON[®] coated screen works with the coalesce element to act as a water barrier while the water droplets grow before being collected. The final conditioning is Hy-Pro 3M media rated $\beta 5_{rcl} > 1000$, it's a total solution.

Element Interchange & Upgrade 4

Kaydon Model No.	Kaydon Part No.	Hy-Pro Direct Interchange	Description	Hy-Pro Upgrade	Description
K1000	A910201	HP102L36-6MB	Glass media pre-filter β7 _[C] > 1000	HP101L36-3MB	High capacity glass media pre-filter β5 _[c] > 1000
K1100 (replaced K1000)	A910201, A910266	HP101L36-6MB	High capacity glass media pre-filter β7 _[C] > 1000	HP101L36-3MB	High capacity glass media pre-filter β5 _[c] > 1000
K2000	A910202	HPQK2	Coalesce element cellulose media	HPQK2G	Coalesce element synthetic media
K2100 (replaced K2000)	A910202, A920267	HPQK2G	Coalesce element synthetic media	-	-
K3000	A910203, A910303	HPQK3	Separator element cellulose media	HPQK3P-3M	Separator layer + β5 _[C] > 1000 glass media polishing
K3100 (replaced K3000)	A910203, A910268	HPQK3P-3M	Separator layer + β5 _[C] > 1000 glass media polishing	-	-
K4000	A910204	HP102L36-3MB	High capacity glass media post-filter $\beta 5_{cc} > 1000$	HP101L36-3MB	High capacity glass media post-filter β5 _[c] > 1000
K4100 (replaced K4000)	A910204, A910269	HP101L36-3MB	High capacity glass media post-filter β5 _[c] > 1000	HP101L36-1MB	High capacity glass media post-filter β2.5 _[C] > 1000

Optimize Your Turbo-TOC* performance with Hy-Pro Elements

Achieve lowest turbine lube oil reservoir ISO fluid cleanliness results and maximize element life by upgrading to Hy-Pro HP101L36-3MB series for pre-filter and HP101L36-1MB post-filter.

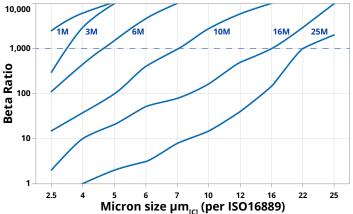
For optimum water removal efficiency and fluid compatibility use HPQK2G coalesce element and HPQK3P-3M separator/ polisher elements (all synthetic media, non-cellulosic).

To reduce element change out costs on skids with pre-filter and post-filter housings install HP101L36-3MB in pre-filter with HPQK2G coalesce and HPQK3P-3M separator / polisher elements in the coalesce vessel (extends coalesce element life).

Upgrade to HPQK2G and HPQK3P-3M synthetic media elements and achieve > 95% single pass water removal efficiency.

Tested to ISO Quality Standards

ISO 2941	Collapse and burst resistance
ISO 2942	Fabrication and Integrity test
ISO 2943	Material compatibility with fluids
ISO 3724	Flow fatigue characteristics
ISO 3968	Pressure drop vs. flow rate
ISO 16889	Multi-pass performance testing


Fluid Compatibility

Petroleum based fluids, water glycols, polyol esters, phosphate esters, HWBF. Contact Hy-Pro for seal selection assistance.

Media

G8 media pleat pack features our latest generation of graded density glass media that delivers required cleanliness while optimizing dirt capacity.

Glass Media Filtration Efficiency (Beta Ratio) vs Micron Size

Off-line Filtration Types, Uses & Contamination Prevention

Our mission is to make our customers as efficient as possible, and we achieve that with the highest quality filtration products and total system cleanliness strategies to maximize uptime, productivity and prevent costly fluid contamination related failures. We often achieve that by simply upgrading our customers to Hy-Pro DFE rated filter elements and Hy-Dry breathers. But too many systems have insufficient filtration, or worse yet no filtration, creating the need for a range of off-line particulate filtration solutions.

An Off-line system (aka kidney loop) is connected to the reservoir of a hydraulic, lube or storage system that operates independently of the operation of that system meaning that it can be stopped for an element change without interrupting operations. It allows the flexibility to use ultra-high efficiency media to remove particulate and insolubles to reach low ISO Codes that might otherwise be unattainable. Conditioning off-line extends the life of critical on-board pump discharge, servo pilot and return line filters that can only be changed when the system is not running. Maintaining cleanliness in the reservoir protects critical pump inlet, eliminating the need for suction strainers that can cause pump cavitation.

Dedicated

A properly sized off-line filtration system can turn over the entire volume of a reservoir several times a day (we recommend 8 turns), maintaining ISO fluid cleanliness codes well below the upper limit. Whether you're using low viscosity hydraulic or high viscosity lube oil, implementing dedicated off-line filtration will yield longer bearing and hydraulic component life and longer useful fluid life. When dealing with high viscosity gearbox and rolling mill lubricants, it's most effective to filter off-line so that the flow rate and filter can be sized for optimal pressure drop and element life without sacrificing efficiency. That means you can pump thick fluid through an oversized filter at a low flow rate and get it super clean, even when it's cold outside. And when the filter element has removed kilograms of dirt you don't have to stop your operation to change it; just turn off the kidney loop, change elements, and get right back to filtering your fluids. With a dedicated system, you know that your fluids are always clean and your system is always protected.

Mobile

Portable filtration systems are a valuable tool in the battle against contamination and are ideal for fluid transfer and in field service work. The Hy-Pro range of portable filtration systems includes compact units for small gearboxes, filter carts optimized for hydraulic applications and units with generously sized filters for high viscosity or highly contaminated fluids commonly found in fluid reclamation. Staged filtration, two filters in series, allows for combined water removal and particulate filtration in one pass to get you on to the next job more quickly. Hy-Pro mobile filtration systems are designed for industrial, outdoor use with high quality components including cast iron gear pumps and non-shredding wheels that get your filtration exactly where you need it.

Integrated versatility

Implementing off-line filtration is the best way to ensure your hydraulic and lube oils are clean and your systems are operating efficiently. Whereas applications that consume fluids (diesel, etc) must filter fluids in a single pass, off-line filter systems for hydraulic and lube oils allow for recirculating the reservoir to remove more dirt with every pass. A dedicated off-line system has the added benefit of being used as a 3-way valve to top off the reservoir, turning your filter system into a fluid transfer solution that removes any dirt from oil that is added and prevents contamination from ever entering your system.

Off-line Systems More than just filtration.

With a Hy-Pro dedicated filtration system, fluid contamination related failures and premature fluid replacement are a thing of the past. Every off-line solution includes sample ports before and after filters, providing accurate reservoir condition and filter performance validation. Some great options include on-board particle monitors, cooling for hot gearboxes, ultra high viscosity, dragline-optimized skids, automatic isolation valves, hazardous environment, custom enclosures and more. As with all Hy-Pro systems, your off-line system can be completely customized to provide the best solution for your application.

CFU Compact Filter Unit	44	A compact, hand portable solution ideal for fluid transfer and conditioning small gearboxes and hydraulic reservoirs. Available in several filter configurations MF3, S409 staged filtration or single large spin-on for high viscosity.
FPL Filter Panel	48	A dedicated wall or stand mount filter panel ideal for hydraulic reservoirs, dispensing fluids from storage, and diesel conditioning. Features two filters in series and a range of elements including high efficiency and water removal.
FC Filter Cart	52	Portable filter cart complete with hoses and wands, the FC is narrow and well balanced for taking filtration wherever you need it. Perfect for conditioning multiple hydraulic systems (injection molding) and fluid transfer (top-off).
FSL High Viscosity/ High Flow Filtration Systems	56	A dedicated off-line system with large filters suited for high viscosity gearbox fluids or heavily contaminated fuels. Top loading filter housings minimize mess during element service and the HP107 coreless element with integral zero-leak bypass provides a new bypass with each element change.
FSLD Dual High Viscosity/ High Flow Filtration Systems	60	The FSLD offers all the features of the FSL with two filters in series, parallel or duplex to deliver lower ISO Codes and cleaner fluids. With multiple valve options, FSLD systems can be run in parallel, series or in isolation functioning as a duplex arrangement.
FSW Wall Mounted Filtration Systems	64	The latest addition to the fleet of Hy-Pro solutions, FSW, is our most flexible side loop contamination solution. Flow rate, element size and media selections scalable for any application from high flow fuel, plastic injection molding varnish control, phosphate ester acid remediation, wind turbine gearbox filtration, and much more.
FCL High Viscosity/High Flow Filter Carts	68	FCL features an oversized filter element so you can clean the dirtiest gear lubricants, reclaimed fluids and contaminated oils with high efficiency filter media. Top loading filter housings minimize mess during element service and the HP107 coreless element with integral zero- leak bypass provides a new bypass with each element change.
HS Heated Filtration Systems	72	Combining the high efficiency filtration of the FSL with a specialized heating design, the HS is perfect for cold weather operations or for getting systems up to temperature during cold starts. Programmable temperature control and low watt density jacketed heaters maintain temperature and protect the oil from direct contact with heating elements.

CFU Compact Filter Unit

Bigger isn't always better. The Compact Filter Unit provides you with the best filtration at a size you can take anywhere. Tried and true, the CFU is the ultimate filtration system in power and mobility. And with easy to change Spin-On elements or heavy duty MF3s, you can rest easy knowing your filtration will always exceed your expectations.

hyprofiltration.com/CFU

Small size, huge results.

Designed specifically for limited space operations, the CFU maximizes power in a minimal package. Use the ergonomic handle to hoist the CFU to provide filtration directly within turbine nacelles or filter straight from the barrel to take out contaminants before they can ever reach your equipment.

The first stage of success.

Staged filtration allows a range of media selections for particulate and water removal to deliver ISO Codes right on target. Choose from six element configurations to get the perfect CFU for your toughest contamination problems.

Media matters.

DFE rated filter elements stay true to efficiency ratings and ensure the highest level of particulate capture and retention capabilities. And with media options down to $\beta 2.5_{CI} \ge 1000$ you can be sure contamination stays exactly where you want it: out of your fluid.

Redefines standard filtration.

Knowledge of your system is the ultimate tool in the fight against contamination. With upstream and downstream sample ports located on every machine, the standard CFUs are anything but standard.

Different by design.

Built from lightweight aluminum and engineered for portability, the CFU is perfectly designed to filter new fluids during transfer and top-off bulk oil before use. For fluids already in service, use the CFU to flush them through the high efficiency elements for unparalleled levels of fluid cleanliness.

Completely customizable.

Every CFU can be specifically tailored to the job at hand so you get the perfect solution to suit your needs. With a variety of flow rates and power options, even the ability to color coordinate each CFU to your existing safety standards, the possibilities are endless for what you can do with the CFU.

GFU Specifications

Dimensions ¹	Height 21" (54 cm)	Length 21" (54 cm)	Width 12" (31 cr		Veight 17 lbs (21 kg)
Connections	Inlet ¾" male JIC with 37° flare	Outlet ½" male JIC with		2.4 m) suction female J 2.4 m) discharge femal	
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient -4°F to 10 (-20C to 4		
ΔP Indicator Trigger	22 psi (1.5 bar). Consult fa	ctory for other optior	IS.		
Filter Assembly Bypass	25 psid (1.7 bard). Consult	factory for other opt	ions.		
Materials of Construction		ilter Assembly luminum head	Hoses Reinforced synthetic	Wands Stainless steel	Element Bypass Valve Nylon
Electric Motor	TEFC, 56C frame ½ hp, 1450-1750 RPM				
Electric Connection	15' (4.6 m) cord included in	nstalled on machine. ²			
Pump	Positive displacement gea pump inlet 15 psi (1 bar). (on	
Pneumatic Option Air Consumption	~15 cfm @ 60 psi ³				
Media Description	M G8 Dualglass, our latest ge of DFE rated, high perform media for all hydraulic & lu fluids. $\beta x_{cc} \ge 1000$ ($\beta x \ge 20$	nance glass media ubrication scrim.	alglass high performance combined with water re $\beta x_{[C]} \ge 1000 (\beta x \ge 200)$		eel wire mesh ≥ 2 (βx ≥ 2)
Replacement Elements	CFUD HP75L8 CFUH HP75L8 CFUL HP409L9 CFUM HP60L8 CFUN HP60L8	ment elements, us ment Part Number [Media Selection Cod – [Media Selection Cod [Media Selection Cod [Media Selection Cod [Media Selection Cod [Media Selection Cod	des from your equi Example HP75L8-12MB HP75L8-3ME-WS HP409L9-40WV HP60L8-16MB HP60L8-6AV HP75L8-25MV	oment part number:	
Viscosity	Max viscosity rated for 200	0 cSt. ⁴			
Fluid Compatibility	Petroleum and mineral ba seal option. For phosphate				mpatibility with fluorocarbon ty from special options.
Hazardous Environment Options	Select pneumatic powered Call for IEC, Atex or other i				
Filter Sizing Guidelines	See pages for selecte MF3: 190 S75-76: 182	d options filter s	zing guidelines:		

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²Selecting pneumatic power option removes electric cord. ³Air consumption values are estimated maximums and will vary with regulator setting. ⁴When sized and installed appropriately. Contact factory for applications above 200 cSt for sizing requirements.

CFU Part Number Builder

47	

CFU	Flow Rate Power Options Hose Connection Special Options Media 1 Media 2 Seal
Model	Filter AssembliesFilter ElementsD1 x \$75D Spin-On filter assembly2 x HP75L8-*** filter elements in parallel flowH'1 x \$75 Spin-On filter assembly1 x HP75L8-*** filter elementL2 x \$409 Spin-On filter assemblies2 x HP409L9-*** filter elementM'1 x MF3 cartridge housing1 x HP60L8-*** filter elementN2 x MF3 cartridge housings2 x HP60L8-*** filter elementS2 x \$75 Spin-On filter assemblies2 x HP75L8-*** filter elements in series flow
Flow Rate ²	05 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 2 gpm (7.5 lpm) 5 5 gpm (18.9 lpm)
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & flow meter included. 22 208-230 V ac, 1P 21 220 V ac, 1P 11 100 V ac, 1P
	Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use X_3 Add X prefix to power option listed above. Not available with (00) Pneumatic Option.
Hose Connection	 G Female BSPP swivel hose ends, no wands S Female JIC swivel hose ends, no wands W Female JIC swivel hose ends, with wands
Special Options	BComplete filter bypass lineNPM-1 ready (plumbing only)CCE marked for machinery safety directive 2006/42/ECO3On-board PM-1 particle monitor & clean oil indicator lightG3Spill retention pan with fork guides (industrial coated steel)P4Phosphate ester fluid compatibility modificationJAdd pressure gauge between pump & filter assemblyS95Skydrol fluid compatibility modificationMTotal system flow meter (120 cSt max)ZO3On site start-up training
Media Selection	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Seals	 B Nitrile (Buna) V Fluorocarbon E-WS⁷ EPR seals + stainless steel support mesh

¹When selected, omit Media 2 option from part number builder. ²Nominal flow rates at 60 Hz motor speeds.

- Significant size/weight increase when selected. Contact factory for specifications.
 When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.
 When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.
 When Model "L" selected, use 10M or 10A for respective media code in place of 12M or 12A.

⁷Only available in 3M media for HP75L8 series elements.

FPL Dedicated Off-line Filter Panel

A dedicated contamination solution for bulk oil handling, fluid transfer and reservoir or gearbox conditioning.

Enhance cleanliness by adding the FPL to an existing hydraulic system and extend the life of in-line filters.

hyprofiltration.com/FPL

Ready when you are.

From the pump to the seals, every FPL arrives fully assembled and ready for installation so you can get straight to cleaning your fluids and improving the efficiency of your equipment.

The first stage of success.

Staged filtration allows a range of media selections for particulate and water removal to deliver ISO Codes right on target. Choose between dual MF3 cartridge or up to four Spin-On elements to tackle the most viscous fluids and achieve unimaginably low ISO Codes in a single pass.

Media matters.

DFE rated filter elements stay true to efficiency ratings and ensure the highest level of particulate capture and retention capabilities. And with media options down to $\beta 2.5_{CC} \ge 1000$, you can be sure contamination stays exactly where you want it: out of your system.

Setting the new standard.

Sample ports in the right locations arm you with access to consistently accurate system conditions which is why every FPL comes standard with upstream and downstream sample ports in their proper positions.

Engineered for industrial use.

Precision engineered and built from heavy gauge steel, the FPL is designed to be a powerhouse addition to your equipment. To top it off, the cast iron gear pump with internal relief gives you the durability you want with the safety you need.

From concept to creation.

Whether for plastic injection molding hydraulics with varnish issues or a wind turbine gearbox with small size restrictions, the FPL can be custom designed and built to meet the exact needs to solve your contamination problems.

FPL Specifications

Dimensions ¹	Height 22" (58 cm)	Length 42" (107 cm)	Depth 12" (31 cm)	Weight 138 lbs (63 kg)		
Connections	Inlet with 3-way valve 1" FNPT		Outlet 1" FNPT			
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temperate -4°F to 104°F (-20C to 40C)	ure		
ΔP Indicator Trigger	Standard MF3 Assemblies 22 psi (1.5 bar)	Special Options D1 + S1 (S75/ 22 psi (1.5 bar)	Special Option D2 (I 32 psid (2.2 bard)	DFN) Special Option P1 (PFH) 73 psid (5 bard)		
Filter Assembly Bypass	Standard MF3 Assemblies 25 psid (1.7 bard)	Special Options D1 + S1 (S75/ 25 psid (1.7 bard)	C) Special Option D2 (I 50 psid (3.4 bard)	Special Option P1 (PFH) 102 psid (7 bard)		
Materials of Construction	Frame Carbon steel with industrial co	oating				
Electric Motor	TEFC, 56-145 frame 1 hp, 1450-1750 RPM					
Motor Starter	MSP (motor starter/protector) in an IP65, aluminum enclos	ure with short circuit and	overload protection.		
Pump	Cast iron, positive displaceme on pump inlet 15 psi (1 bar). (
Pump Bypass	Full bypass at 150 psi (10 bar)	2				
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³					
Media Description	M G8 Dualglass, our latest gener of DFE rated, high performan		performance St	th water removal media $\beta x_{rcr} \ge 2$ ($\beta x \ge 2$)		
1	media for all hydraulic & lubri fluids. $\beta x_{[C]} \ge 1000 (\beta x \ge 200)$	ication scrim. $\beta x_{[C]} \ge 1000$, [c] , ,		
Replacement	media for all hydraulic & lubri fluids. $βx_{[C]} \ge 1000$ ($βx \ge 200$)	nt elements, use corresp Filter Element Pa vls) HP60L13 – [Media HP75L8 – [Media HP39NL15 – [Medi HP419L13 – [Med	(βx ≥ 200) onding codes from yc	bur equipment part number: Example de] HP60L13-12MV e] HP75L8-25MB ode] HP39NL15-10AB ode] HP419NL13-10MV		
Replacement Elements	media for all hydraulic & lubri fluids. $\beta x_{[C]} \ge 1000 \ (\beta x \ge 200)$ To determine replaceme Model Standard FPL (2x MF3 13" bov Special Option D1 Special Option D2 Special Option P1	nt elements, use corresp Filter Element Pa vls) HP60L13 – [Media HP75L8 – [Media HP39NL15 – [Medi HP419L13 – [Med	onding codes from yo art Number Selection Code] [Seal Co Selection Code] [Seal Co ia Selection Code] [Seal Co ia Selection Code] [Seal Co	bur equipment part number: Example de] HP60L13-12MV e] HP75L8-25MB ode] HP39NL15-10AB ode] HP419NL13-10MV		
Replacement Elements Viscosity Fluid	media for all hydraulic & lubri fluids. $\beta x_{[C]} \ge 1000 \ (\beta x \ge 200)$ To determine replaceme Model Standard FPL (2x MF3 13" bov Special Option D1 Special Option D2 Special Option P1 Special Option S1	nt elements, use corresp Filter Element P vls) HP60L13 – [Media HP75L8 – [Media HP39NL15 – [Media HP419L13 – [Media HP75L8 – [Media HP75L8 – [Media	onding codes from your sector of the secto	bur equipment part number: Example de] HP60L13-12MV e] HP75L8-25MB ode] HP39NL15-10AB ode] HP419NL13-10MV e] HP75L8-3AB		
Replacement Elements Viscosity Fluid Compatibility Hazardous Environment Options	media for all hydraulic & lubri fluids. $\beta_{x_{[C]}} \ge 1000 \ (\beta_X \ge 200)$ To determine replaceme Model Standard FPL (2x MF3 13" bov Special Option D1 Special Option D2 Special Option P1 Special Option S1 2-5000 cSt ⁴ Petroleum and mineral based contact factory for compatibili skydrol fluid (S9) compatibility	nt elements, use corresp Filter Element Pa vls) HP60L13 – [Media HP75L8 – [Media HP39NL15 – [Media HP419L13 – [Media HP75L8 – [Media I fluids, #2 diesel fuels (standa ity with fluorocarbon seal opt y select fluid compatibility fro nit (Power Option 00) or explo	(βx ≥ 200) onding codes from yc art Number Selection Code] [Seal Co Selection Code] [Seal Cod ia Selection Code] [Seal Cod ia Selection Code] [Seal Cod Selection Code] [Seal Cod ard). For specified synthet ion. For phosphate ester m special options. sion proof NEC Article 50'	pur equipment part number: Example de] HP60L13-12MV e] HP75L8-25MB ode] HP39NL15-10AB ode] HP419NL13-10MV e] HP75L8-3AB ics (P9) or		

CE

(néc)

ւ(Ա

(Ex)

Ð

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure. ³Air consumption values are estimated maximums and will vary with regulator setting. ⁴When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

FPL Part Number Builder

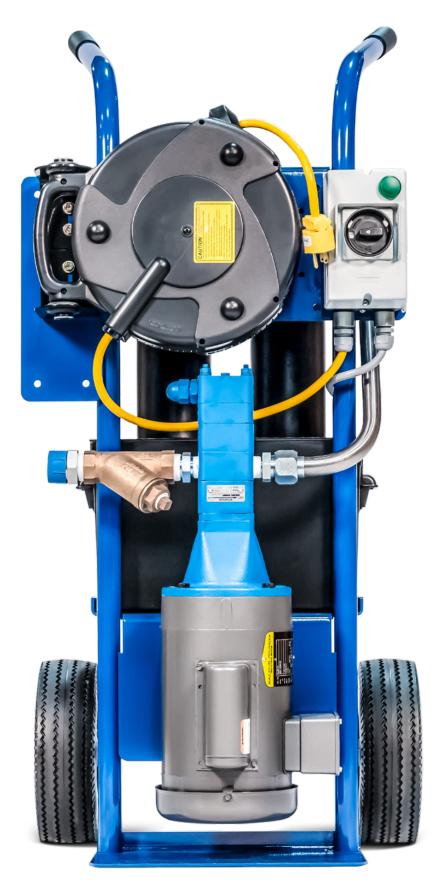
FPL Flow Rate	Power Options Special Options Media 1 Media 2 Seal
Flow Rate ¹	05 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 2 gpm (7.5 lpm) 5 5 gpm (18.9 lpm) 10 10 gpm (37.9 lpm)
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & flow meter included. 22 208-230 V ac, 3P 40 380-440 V ac, 3P flow meter included. 46 460-480 V ac, 3P 52 525 V ac, 3P flow meter included. 57 575 V ac, 3P 52 525 V ac, 3P flow meter included.
	Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use Add X prefix to power option listed above. Not available with (00) Pneumatic Option
Special Options	BComplete filter bypass lineNPM-1 ready (plumbing only)CCE marked for machinery safety directive 2006/42/ECOOn-board PM-1 particle monitor & clean oil indicator lightD122 x S75DL8 filter assemblies in seriesDD121 x DFN39NL15 duplex filter assemblyDD3True differential pressure gauge, visual green to redE100 mesh cast iron basket strainerS122 x S75L8 Spin-On filter assemblies in seriesJAdd pressure gauge between pump & filter assemblyS95Skydrol fluid compatibility modificationJAdd pressure gauge between pump & filter assemblyUCUL and/or CSA marked starter enclosure for CanadaKHP75L8-149W Spin-On suction strainerYVFD variable speed motor frequency controlL2Liquid cooled heat exchangerZOn site start-up trainingMTotal system flow meter (120 cSt max)EOn site start-up training
Media Selection	$ \begin{array}{ c c c c c c c c } \hline G8 \ Dualglass & G8 \ Dualglass + water removal \\ \hline 1M & \beta_{2.5}_{rCl} \geq 1000, \beta_{1} \geq 200 \\ \hline 3M & \beta_{5}_{rCl} \geq 1000, \beta_{3} \geq 200 \\ \hline 6M & \beta_{7}_{rCl} \geq 1000, \beta_{6} \geq 200 \\ \hline 12M^{6} & \beta_{7}_{rCl} \geq 1000, \beta_{12} \geq 200 \\ \hline 12M^{6} & \beta_{7}_{rCl} \geq 1000, \beta_{12} \geq 200 \\ \hline 16M & \beta_{17}_{rCl} \geq 1000, \beta_{17} \geq 200 \\ \hline 6M & \beta_{7}_{rCl} \geq 1000, \beta_{17} \geq 200 \\ \hline 25M & \beta_{22}_{rCl} \geq 1000, \beta_{25} \geq 200 \\ \hline \end{array} \qquad \begin{array}{c} G8 \ Dualglass + water removal \\ \hline 3A & \beta_{5}_{rCl} \geq 1000, \beta_{3} \geq 200 \\ \hline 6A & \beta_{7}_{rCl} \geq 1000, \beta_{6} \geq 200 \\ \hline 12A^{6} & \beta_{12}_{rCl} \geq 1000, \beta_{12} \geq 200 \\ \hline 25A & \beta_{22}_{rCl} \geq 1000, \beta_{25} \geq 200 \\ \hline \end{array} \qquad \begin{array}{c} Stainless wire mesh \\ \hline 25W & 25\mu nominal \\ \hline 40W & 40\mu nominal \\ \hline 74W & 74\mu nominal \\ \hline 149W & 149\mu nominal \\ \hline 49W & 149\mu nominal \\ \hline \end{array} \qquad \begin{array}{c} Stainless wire mesh \\ \hline Stainless wire mesh \\ $
Seals	 B Nitrile (Buna) V Fluorocarbon E-WS⁷ EPR seals + stainless steel support mesh

¹Nominal flow rates at 60 Hz motor speeds.

²Replaces standard MF3 housings.

^{*}When selected, omit Media 2 option from part number builder.
 ^{*}When selected, omit Media 2 option from part number builder.
 ^{*}When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.
 ^{*}When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.
 ^{*}When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.
 ^{*}When Special Options "D2" or "P1" selected, use 10M or 10A for respective media code in place of 12M or 12A.
 ^{*}Only available in 3M media for HP75L8 series elements.

51



A fully self-contained mobile solution for bulk oil handling, fluid transfer and reservoir or gearbox conditioning.

Ideal for lower viscosity hydraulic oil, lube oil and diesel fuel.

hyprofiltration.com/FC

Engineered for industrial use.

Rugged construction and attention to the smallest of details come together remarkably so that nothing holds you or your equipment back. The easy to maneuver handtruck style design with never-flat pneumatic tires and cast iron gear pump with internal relief mean you get powerful filtration exactly when and where you need it.

Set the stage for your success.

Staged filtration allows a range of media selections for particulate and water removal to deliver ISO Codes right on target. Choose between dual MF3 cartridge (standard) or up to four Spin-On elements to tackle the most viscous fluids and achieve unimaginably low ISO Codes in a single pass.

Media matters.

DFE rated filter elements stay true to efficiency ratings and ensure the highest level of particulate capture and retention capabilities. And with media options down to $\beta 2.5_{CC} \ge 1000$, you can be sure contamination stays exactly where you want it: out of your systems.

Your standard Filter Cart, reimagined.

Sample ports in the right locations arm you with access to consistently accurate system conditions which is why every FC comes standard with up- and downstream sample ports in their proper positions. And with the 35' (11m) retractable cord reel or 35' air hose for pneumatic models, it's easy to see why the standard FC isn't so standard after all.

With options to make your job easier.

With the optional filter bypass line, cold starts, gearbox pump-outs, and even element change outs become easier than ever. Add the optional PM-1 particle monitor for real time cleanliness data and know exactly how your filtration is performing without the need for a bottle.

Completely customizable.

The FC comes in a variety of flow rates and with electric options that range from 120 to 575 V ac, single or three phase. Or choose the pneumatic and explosion proof models to take your filtration into hazardous zones like you never thought possible. Even color coordinate each FC to your existing safety standards. With thousands of combinations to choose from, the possibilities are endless for what you can do with the FC.

FC Specifications

Dimensions ¹	Height 45" (114 cm)	Width 20" (50 c	m)	Depth 23" (58 cm)		Weight 125 lbs (57 kg)
Connections	Inlet FC05-FC5: 1" n FC10: 1.25" ma	nale JIC (37° flare) ale JIC (37° flare) le JIC (37° flare)	Outlet FC05-FC10 1	" male JIC (37° flare) nale JIC (37° flare)	Hoses FC05-FC5: FC10: FC20- FC30:	1" x 10 ft (2.4 m) 1.25" x 10 ft (2.4 m) suction 1" x 10 ft (2.4 m) discharge 1.5" x 10 ft (2.4 m) suction 1.25" x 10 ft (2.4 m) discharge
Operating Temperature	Fluid Temper 30°F to 225°F (0°C to 105°C)		Ambient Te -4°F to 104°F (-20C to 40C)			
ΔP Indicator Trigger). Consult factory for othe				
Filter Assembly Bypass	25 psid (1.7 ba	ard). Consult factory for of	ther options.			
Materials of Construction	Frame Industrial coated steel	Filter Assembly Aluminum head & canis	Hoses ter Reinfor	ced synthetic	Wands Stainless Steel	Element Bypass Valve Nylon
Electric Motor	TEFC, 56-215 f 0.5-3 hp, 1450					
Motor Starter	MSP (motor st	arter/protector) in an IP6	5, aluminum e	nclosure with short cire	cuit and overloa	d protection.
Electric Connection	included. NEM	ac and under, single phase A 5-15 plug installed on Po 230 V ac: 35' (11 m) powe	wer Option 12.			
Pump		itive displacement gear pu : 15 psi (1 bar). Consult fac			essure	
Pump Bypass	Full bypass at	150 psi (10 bar)²				
Pneumatic Option Air Consumption	~40 cfm @ 80 35' (11 m) retr	psi ³ actable air hose included	when pneuma	atic option selected (rep	olaces electric co	ord reel).
Media Description	of DFE rated, h media for all h	our latest generation nigh performance glass nydraulic & lubrication 000 ($\beta x \ge 200$)	media comb	s high performance ined with water remov 1000 ($βx \ge 200$)		steel wire mesh cı ≥ 2 (βx ≥ 2)
Replacement Elements	Model	2x MF3 13" bowls) n D1	Filter Eleme HP60L13 – [M HP75L8 – [M	responding codes f ent Part Number Media Selection Code] [edia Selection Code] [S edia Selection Code] [S	[Seal Code] Seal Code]	Jipment part number: Example HP60L13-12MV HP75L8-25MB HP75L8-3AB
Viscosity	2-5000 cSt ⁴					
Fluid Compatibility	contact factor	d mineral based fluids, #2 y for compatibility with flu 59) compatibility select flu	uorocarbon sea	al option. For phospha	te ester (P9) or	
Hazardous Environment Options		atic powered unit (Power ex or other requirements				

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump lifeand/or cause premature pump failure. ³Air consumption values are estimated maximums and will vary with regulator setting.

⁴When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

c(۳)

CE

(néc)

Æx>

FC Part Number Builder

FIOW Rate	Power C	ptions Hose Special Options Media 1 Media 2 Seal
Flow Rate ¹	05 1 2 5 10 20 ²	0.5 gpm (1.7 lpm) 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 5 gpm (18.9 lpm) 10 gpm (37.9 lpm) 20 gpm (75.7 lpm)
Power Options Contact factory for options not listed	60 F 12 22 23 46 57	Iz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & 208-230 V ac, 1P 21 220 V ac, 1P motor & PD pump. FRL & 208-230 V ac, 3P 40 380-440 V ac, 3P flow meter included. 460-480 V ac, 3P 52 525 V ac, 3P flow meter included.
		losion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use Add X prefix to power option listed above. Not available with (00) Pneumatic Option
Hose Connection	G S W	Female BSPP swivel hose ends, no wands Female JIC swivel hose ends, no wands Female JIC swivel hose ends, with wands
Special Options	B C D1 ³ D3 E H1 H2 J K	Complete filter bypass lineMTotal system flow meter (120 cSt max)CE marked for machinery safety directive 2006/42/ECNPM-1 ready (plumbing only)2 x S75DL8 filter assemblies in seriesOOn-board PM-1 particle monitor & clean oil indicator lightTrue differential pressure gauge, visual green to redP94Phosphate ester fluid compatibility modification100 mesh cast iron basket strainerS132 x S75 Spin-On filter assemblies in series10' (3 m) return line hose extensionS95Skydrol fluid compatibility modification20' (6 m) return line hose extensionUCUL and/or CSA marked starter enclosure for CanadaAdd pressure gauge between pump & filter assemblyTo site start-up training
Media Selection	G8 [1M 3M 6M 12M 16M 25M	
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon ⁶ EPR seals + stainless steel support mesh

¹Nominal flow rates at 60 Hz motor speeds. ²Contact factory for sizing assistance on all viscosities. ³Replaces standard MF3 housings.

When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. Only available in 3M media for HP75L8 series elements.

55

FSL High Viscosity Filtration Systems

A dedicated contamination solution for bulk oil handling and fluid transfer. Designed to excel in filtering particulate from heavily contaminated oil, the FSL keeps gearbox lubricant clean and equipment running efficiently.

Ideal for high viscosity gearbox or lube applications and highly contaminated fuel applications.

hyprofiltration.com/FSL

Filtration starts with the filter.

The oversized coreless filter element in every FSL delivers lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass so with every filter change you get a new bypass along with peace of mind.

Weather any condition.

From cold weather to cold starts, the FSL is engineered to easily handle almost any job. Designed to combine incredible capacity and low maintenance, the oversized housing with secure swivel bolts allow for effortless element changes with all the parts kept right where they need to be.

Cleaner fluid + greater reliability.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. And with the cast iron gear pump with internal relief, you get the durability you want with the safety you need, all conveniently in one square foot of floor space.

Options to make your job easier.

By selecting the optional filter bypass line, cold starts and element change-outs become easier than ever. Choose the pneumatic powered model or explosion proof option to match your application and even add the optional PM-1 particle monitor for real time cleanliness data without the need for a bottle.

Setting the new standard.

Every FSL comes standard with sample ports in the right locations to arm you with access to consistently accurate system conditions. And with true differential pressure gages, you'll know exactly how well your filtration is performing.

Completely customizable.

Every FSL can be tailored to meet any application and even to fit your existing safety standards. With the power to filter fluids greater than ISO VG 1500, contamination doesn't stand a chance. 57

FSL Specifications

Dimensions ¹	Height 50" (127 cm)	Width 22" (56 c	m)	Depth 28" (71 cm)	Weight 222 lbs (101 kg)	
Connections	Inlet with 3-way valve FSL05-FSL10: 1" FNPT FSL20-FSL30: 1.5" FNPT			Outlet FSL05-FSL10: 1" FNI FSL20-FSL30: 1.25"		
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)			Ambient Tempera -4°F to 104°F (-20C to 40C)	ature	
Materials of Construction	Vessel Carbon steel with indust	trial coating				
Electric Motor	TEFC, 56-215 frame 0.5-3 hp, 1450-1750 RPN	TEFC, 56-215 frame 0.5-3 hp, 1450-1750 RPM, see Appendix for amp ratings.				
Motor Starter	MSP (motor starter/prot	ector) in an IP6	5, aluminum enclosu	re with short circuit a	and overload protection.	
Pump	Cast iron, positive displa on pump inlet 15 psi (1 l				ire	
Pump Bypass	Full bypass at 150 psi (1	0 bar) ²				
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³					
Media Description	MAWG8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{rCl} \ge 1000$ ($\beta x \ge 200$)G8 Dualglass high performance media combined with water removal scrim. $\beta x_{rCl} \ge 1000$ ($\beta x \ge 200$)Stainless steel wire mesh media $\beta x_{rCl} \ge 2$ ($\beta x \ge 2$)			Stainless steel wire mesh		
Replacement Elements	To determine replac Element Type Code 5 6	Filter Elemen HP105L[Length	t Part Number n Code] – [Media Seleo	nding codes from ction Code][Seal Code ction Code][Seal Code		
	7 8X 82	HP107L[Length HP8314L[Leng	th Code] – [Media Sele	ction Code][Seal Code ection Code][Seal Cod ection Code][Seal Cod	P] HP107L36-VTM710V de] HP8314L39-25WV	
	8X 82 85	HP107L[Length HP8314L[Leng HP8314L[Leng	th Code] – [Media Sele th Code] – [Media Sele	ection Code][Seal Cod	P] HP107L36-VTM710V de] HP8314L39-25WV de] HP8314L16-12MB	
Viscosity	8X 82	HP107L[Length HP8314L[Leng HP8314L[Leng	th Code] – [Media Sele th Code] – [Media Sele	ection Code][Seal Cod ection Code][Seal Cod	P] HP107L36-VTM710V de] HP8314L39-25WV de] HP8314L16-12MB	
Viscosity Fluid Compatibility	8X 82 85	HP107L[Length HP8314L[Leng HP8314L[Leng HP8314L[Leng based fluids, #2 batibility with flu	th Code] – [Media Sele th Code] – [Media Sele th Code] – [Media Sele diesel fuels (standar iorocarbon seal optic	ection Code][Seal Cod ection Code][Seal Cod ection Code][Seal Cod d). For specified synt on. For phosphate est	P] HP107L36-VTM710V de] HP8314L39-25WV de] HP8314L16-12MB de] HP8314L39-16ME-WS	
Fluid	8X 82 85 2-5000 cSt ⁴ Petroleum and mineral contact factory for comp skydrol fluid (S9) compa Select pneumatic power	HP107L[Lengtl HP8314L[Leng HP8314L[Leng HP8314L[Leng based fluids, #2 batibility with flu tibility select flu red unit (Power	th Code] – [Media Sele th Code] – [Media Sele th Code] – [Media Sele diesel fuels (standar iorocarbon seal optic id compatibility from Option 00) or explosi	ection Code][Seal Cod ection Code][Seal Cod ection Code][Seal Cod d). For specified synt on. For phosphate est special options. on proof NEC Article	P] HP107L36-VTM710V de] HP8314L39-25WV de] HP8314L16-12MB de] HP8314L39-16ME-WS	

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²¹0 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure.

Air consumption values are estimated maximums and will vary with regulator setting. When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

€x C€ (néc) ւ(Ա)

FSL Part Number Builder

Power Options

Special Options

Media

4				
_		 -		
	Seal			

Flow Rate ¹	05 1 2 5	0.5 gpm (1.7 lpm) 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 5 gpm (18.9 lpm)			10 20 30	10 gpm (37.9 lpm) 20 gpm (75.7 lpm) 30 gpm (114 lpm)		
Element Type	5 6 7	HP105 – no bypass HP106 – 25 psid (1.7 bard) integra HP107 – 50 psid (3.4 bard) integra			8X 82 85	HP8314 – no bypass HP8314 – 25 psid (1.7 bard) integral housing bypass HP8314 – 50 psid (3.4 bard) integral housing bypass		
Element Length	18 ² 36 ²	L18 single length filter housing and coreless element L36 single length filter housing and coreless element				L16 single length filter housing and coreless elemen L39 single length filter housing and coreless elemen		
ΔP Indicator	D E F G	22 psid visual gauge + electric swi 22 psid visual gauge 45 psid visual gauge + electric swi 45 psid visual gauge			H J P	65 psid visual gauge + electric switch 65 psid visual gauge (elements 5 or 8X only) 2 pressure gages (industrial liquid filled)		
Power Options Contact factory for options not listed	60 F 12 22 23 46 57	120 V ac, 1P 1 208-230 V ac, 1P 2 208-230 V ac, 3P 4		z, 1450 RPM 110 V ac, 1P 220 V ac, 1P 380-440 V ac, 3P 525 V ac, 3P		 Pneumatic Pneumatically driven air motor & PD pump. FRL & flow meter included. 		
	Exp x_	osion proof - Class 1, Divisio Add X prefix to power option liste				EC 501 – Ready for outdoor use 00) Pneumatic Option.		
Special Options	A B C D F G J K L M	Air cooled heat exchanger (consult Complete filter bypass line CE marked for machinery safety of High filter ΔP auto shutdown 100 mesh cast iron basket straine Filter element ΔP gauge with tattle Spill retention pan with fork guides (i Add pressure gauge between pump HP75L8-149W Spin-On suction strait High filter element ΔP indicator ligh Total system flow meter (120 cSt r	directi er e tale indust p & fil iner ht	follower needle trial coated steel)	N O P9 ³ R S ⁴ S9 ⁵ U V W Y Y Z	PM-1 ready (plumbing only) On-board PM-1 particle monitor & clean oil indicator lig Phosphate ester fluid compatibility modification Spill retention pan with wheels (industrial coated stee All wetted components 304 or higher stainless stee Skydrol fluid compatibility modification CUL and/or CSA marked starter enclosure for Canada Lifting eye kit Automatic air bleed valve VFD variable speed motor frequency control On site start-up training		
Media Selection	05M 1M 3M 6M 10M	$\begin{array}{l} \beta 0.9_{[c]} \geq 1000, \ \beta 1 \geq 200 \\ \beta 2.5_{[c]} \geq 1000, \ \beta 1 \geq 200 \\ \beta 5_{[c]} \geq 1000, \ \beta 3 \geq 200 \end{array} $	3A 6A 10A ⁶	$\begin{array}{l} \mu \text{alglass} + \text{water} \\ \beta 5_{[C]} \geq 1000, \ \beta 3 \geq \\ \beta 7_{[C]} \geq 1000, \ \beta 6 \geq \\ \beta 12_{[C]} \geq 1000, \ \beta 12 \\ \beta 22_{[C]} \geq 1000, \ \beta 25 \end{array}$	200 200 ≥ 200	NovalStainless wire mesh25W25μ nominal40W40μ nominal074W		
	VTN VTM7		oluble	e oxidation by-proc	duct a	and water removal media		
Seals	B V	Nitrile (Buna) Fluorocarbon						

FSL

Flow Rate

Element Type

Element Length Indicator

⁴With exception to cast iron gear pump.

When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. ⁶For elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A. ⁷Only available on HP107 series elements. Flow rate should not exceed 16 gpm (60 lpm) for HP107L36-VTM710* elements and 8 gpm (30 lpm) for HP107L18-VTM710* elements.

hyprofiltration.com/FSL

¹Nominal flow rates at 60 Hz motor speeds. ²Compatibility will be based on Element Type selection. For elements HP105, HP106, and HP107, use Length code 18 or 36. Length codes 16 and 39 only compatible with HP8314 element. ³When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.

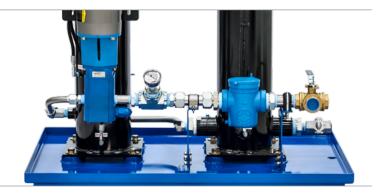
FSLD High Viscosity Dual Filter Skids

A dedicated contamination solution for off-line conditioning and bulk oil handling. Dual housings allow flexibility in using staged element ratings to achieve remarkably clean fluids and hit target ISO Codes in fewer passes, all while extending filter element and oil life.

Ideal for conditioning reclaimed fluids or fluids with high dirt load.

Dynamic duo.

Combine a number of media options in the dual FSL filter housings to maximize single pass efficiency and achieve lower ISO Codes even faster than you thought possible.



Engineered for Industrial use.

Rugged construction and attention to the smallest of details come together remarkably so that nothing holds you or your equipment back. The standard spill retention pan and cast iron pump with internal relief mean you get the power and durability you want with the safety you have to have.

Filtration starts with the filter(s).

The FSLD's dual oversized coreless filter elements deliver lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass, giving you time back from unnecessary gearbox rebuilds and letting you focus on what really matters.

Make your filtration count.

With the optional filter bypass line, cold starts and element change outs become easier than ever. Add to that the PM-1 Particle Monitor for real time cleanliness data and watch your ISO Codes drop like you'd never believe.

Setting the new standard.

Every FSLD comes standard with sample ports in the proper locations to arm you with access to consistently accurate system conditions. And with true differential pressure gages, you'll always know exactly how well your filtration is performing.

Completely customizable.

Every FSLD can be tailored specifically to your application whether you're dealing with high viscosities, cold weather, or temperature sensitive components so you get the perfect solution to your contamination problems.

FSLD Specifications

Dimensions ¹	Height 55" (139 cm)	Length 48" (121 cm)	Width 32" (81 cm)	Weight 484 lbs (219 kg)
Connections	Inlet with 3-Way Valve FSLD05-FSLD10: 1" FNPT FSLD20-FSLD30: 1.5" FNPT		Outlet FSLD05-FSLD10: 1" FNPT FSLD20-FSLD30: 1.25" FNPT	
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)	
Materials of Construction	Housings Carbon steel with industrial coating	Tray Carbon steel with industrial coating		
Electric Motor	TEFC, 56-215 frame 1-5 hp, 1450-1750 RPM			
Motor Starter	MSP (motor starter/protecte	or) in an IP65, aluminum enclosu	are with short circuit and overlo	ad protection.
Pump		nent gear pump with internal re . Consult factory for higher pres		
Pump Bypass	Full bypass at 150 psi (10 ba	ır) ²		
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³			
Media Description	M G8 Dualglass, our latest generation of DFE rated, hig performance glass media for all hydraulic & lubrication fluids. $\beta x_{[C]} \ge 1000$ ($\beta x \ge 200$	combined with water removes scrim. $\beta x_{rcl} \ge 1000$ (βx ≥ 200)	W Stainless steel wire mesh media $\beta x_{[c]} \ge 2$ ($\beta x \ge 2$) al	VTM $\beta 0.9_{[C]} \ge 1000 \text{ particulate,}$ insoluble oxidation by-product and water removal media
Replacement Elements	Element Type CodeFilte5HP16HP1	ent elements, use correspondent er Element Part Number 05L[Length Code] – [Media Select 06L[Length Code] – [Media Select 07L[Length Code] – [Media Select	ion Code][Seal Code] ion Code][Seal Code]	uipment part number: Example HP105L36-6AB HP106L18-10MV HP107L36-VTM710V
	82 HP8	314L[Length Code] – [Media Sele 314L[Length Code] – [Media Sele 314L[Length Code] – [Media Sele	ction Code][Seal Code]	HP8314L39–25WV HP8314L16–12MB HP8314L39–16ME–WS
Viscosity	2-5000 cSt ⁴			
Fluid Compatibility	contact factory for compatil	ed fluids, #2 diesel fuels (standa oility with fluorocarbon seal opti ity select fluid compatibility fron	on. For phosphate ester (P9) or	
Hazardous Environment Options	Select pneumatic powered for IEC, Atex or other requir	unit (Power Option 00) or explos ements. If Explosion Proof optic	ion proof NEC Article 501, Class n (X) selected, no electrical cor	1, Division 1, Group C+D. Call d or cord reel will be included.
Filter Sizing Guidelines	See page 170 for LF filter siz	ing guidelines.		

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure. ³Air consumption values are estimated maximums and will vary with regulator setting. ⁴When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

CE Æx>

(néc)

c(VL)

FSLD Part Number Builder

63

FSLD								_		-			
Flow Rate	FI	ow Type	Element Type	Element Length	Indicato	r Pow Opti		Specia Optior		Media 1	Media 2	Seal	
Flow Rate ¹	05 1 2 5	1 gpm (2 gpm (n (1.7 lpm) 3.7 lpm) 7.5 lpm) 18.9 lpm)					10 20 30	20 gp	m (37.9 lp m (75.7 lp m (114 lpr	m)		
Flow Type	D ² P ² S	Duplex Parallel Series											
Element Type	5 6 7	HP106 -	HP105 – no bypass HP106 – 25 psid (1.7 bard) integral element bypass HP107 – 50 psid (3.4 bard) integral element bypass						HP83		id (1.7 bard)	integral hous integral hous	
Element Length	18 ³ 36 ³		gle length fil gle length fil					16 ³ 39 ³				ing and corele ing and corele	
ΔP Indicator	D E F G	22 psid 45 psid	visual gages visual gages visual gages visual gages	s s + electric				H J P X	65 ps 2 pre	id visual g	es (industrial	ric switches nts 5 or 8X on l liquid filled)	y)
Power Options Contact factory for options not listed	60 12 ⁴ 22 23 46 57	208-230	c, 1P) V ac, 1P) V ac, 3P) V ac, 3P			12, 1450 110 V ac 220 V ac 380-440 525 V ac	:, 1P :, 1P V ac, 3F)			motor 8	atically driven a PD pump. FR ter included.	
	Exp x_		proof - Cla refix to pow								ly for outo option.	loor use	
Special Options	A B C D F J K L M N	Air cool Comple CE marl High filt 100 me Filter el Add pre HP75L& High filt Total sy	ed heat excl te filter byp ked for mac er ΔP auto s sh cast iron ement ΔP ga ssure gauge -149W Spin-(er element Δ stem flow m ady (plumb	nanger (cc ass line hinery safu hutdown basket str auge with between p Dn suction P indicato neter (120	ety direct ainer tattle tale oump & fi strainer r light	tory) tive 2006, e follower lter assen	42/EC	0	On-bo Phos Spill ro All we Skydr CUL a Lifting Autor	pard PM-1 p phate este etention pa etted comp ol fluid co nd/or CSA g eye kit natic air b	barticle monit r fluid comp in with wheel boonents 304 mpatibility r marked star leed valve eed motor f	cor & clean oil ir latibility modifi s (industrial coa or higher stai nodification ter enclosure fo requency cont	ication ted steel) nless steel or Canada
Media Selection	05M 1M 3M	$\beta 2.5_{[C]} \ge 1$ $\beta 5_{[C]} \ge 1$ $\beta 7_{[C]} \ge 1$ $^{8} \beta 12_{[C]} \ge 1$	S 1000, β1 ≥ 1000, β1 ≥ 000, β3 ≥ 20 000, β6 ≥ 20 1000, β12 ≥ 1000, β17 ≥ 1000, β25 ≥	200)0)0 200	3A 6A 10A ⁸	$\begin{array}{l} \beta J_{\text{LC}} = 1\\ \beta J_{\text{LC}} \geq 1\\ \beta J_{\text{LC}} \geq 1\\ \beta J_{\text{LC}} \geq 1\\ \beta J_{\text{LC}} \geq 2\\ \beta J_{\text{LC}} \geq 2\\ \end{array}$	000, β3 000, β6 1000, β1	≥ 200 ≥ 200 2 ≥ 200	0	25 40 74	ainless wir 300 25μnor 300 40μnor 300 74μnor 3090 149μno	ninal ninal ninal	
	VTN VTM	<mark>/</mark> 710 ° β0.9	$c_{C} \ge 1000 \text{ particular}$	rticulate, i	nsoluble oval med	oxidation dia	1		filter ¹⁰ #2 s		ousing 25µ n	ominal	
Seals	B V	Nitrile (Fluoroc			oport me								

³Compatibility will be based on Element Type selection. For elements HP105, HP106, and HP107, use Length code 36. Length code 39 only compatible with HP8314.

^aFor elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A.
 ^aOnly available on HP107 series elements. Flow rate should not exceed 16 gpm (60 lpm) for HP107L36-VTM710* elements and 8 gpm (30 lpm) for HP107L18-VTM710* elements.
 ^aAvailable in series 1 housing only. Replaces Element Type in series 1 housing.

 ⁴High amp draw on 10 GPM models. Estimated FLA 18. See Appendix for details.
 ⁵When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.
 ⁶With exception to cast iron gear pump.

When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

FSW Wall Mounted Filtration Systems

A compact, dedicated off-line contamination solution ideal for small reservoirs, gearboxes and diesel engine crankcase conditioning. Element media options for every application including particulate removal, water absorption, varnish and acid removal.

Compact and compatible, the FSW is the perfect off-line filtration system for removing contamination from your systems and making sure they remain in peak operating condition.

User friendly on a whole new scale.

With everything you need together in one tiny little package, FSW service and operation couldn't be easier. From the top loading housing to sample ports, the FSW is built to match powerful filtration with your convenience. And with the no-tools-required swing bolt enclosure, worrying about lost parts during service becomes a thing of the past.

ICB Advanced Resin Technologies.

ICB canisters treat your oil on a molecular level removing acids, soluble oxidation by-products (varnish), dissolved metals, and extending useful fluid life by protecting AO additives or improving FRF resistivity. Let us help you pick the right ICB media for your turbine & compressor lube oil varnish challenges or to help you achieve trouble free phosphate ester maintenance.

Dedicated to your success.

The FSW provides dedicated off-line filtration to help you stay in control of total system cleanliness and prolong the life of your critical components. And with standard sample ports in their proper positions, you'll be able to see just how good it can be running your equipment with clean oil.

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 0.9_{CC} > 1000 + water$ absorption and integral element bypass valves, you get the perfect element for your application, every time.

AW oils, say goodbye to varnish.

FSW fitted with VTM media removes insoluble varnish and water while delivering incredibly low ISO Codes. Ideal for plastic injection molding and steel mill hydraulics with sensitive servo controls that fall victim to high temperature related insoluble varnish issues.

Small size, huge results.

FSW provides world class filtration in all the tight spaces where you need it most with a compact wall mount arrangement. Combine FSW with a second LFW modular housing for multiple filtration passes, or to combine ICB and particulate removal technologies in series for the perfect comprehensive filtration system.

FSW Specifications

Dimensions ¹	Height 22" (56 cm)	Width 22" (56 cr	n)	Depth 13" (33 cm)	Weight 138 lbs (63 kg)
Mounting & Clearance	Contact factory for detailed	system and	mounting dimens	ions.	
Connections	Inlet ¾" male JIC 37° flare			Outlet ¾" male JIC 37° flar	re
Operating Temperature	Dualglass, Stainless wire m 30°F to 225°F (0°C to 105°C)	esh, VTM	ICB 86°F to 176°F (30°C to 80°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)
Materials of Construction	Vessel Carbon steel with industrial	l coating			
Electric Motor	TEFC, 56 frame ½-1 hp, 1450-1750 RPM				
Motor Starter	Motor starter with overload	protection.			
Pump	Cast iron, positive displacer on pump inlet 15 psi (1 bar)				ure
Pump Bypass	Full bypass at 150 psi (10 ba	ar)			
Pneumatic Option Air Consumption	~15 cfm @ 60 psi ²				
Media Description	M G8 Dualglass, our latest ger of DFE rated, high performa media for all hydraulic & luk fluids. $\beta x_{cc} \ge 1000$ ($\beta x \ge 200$	ance glass brication	A G8 Dualglass high media combined scrim. $\beta x_{[C]} \ge 1000$	with water removal	W Stainless steel wire mesh media $\beta x_{[C]} \ge 2 (\beta x \ge 2)$
	VTM $\beta 0.9_{[C]} \ge 1000 \text{ particulate,}$ insoluble oxidation by-prod and water removal media	luct	varnish deposits,		ecular removal of acids, products and dissolved ecification.
Replacement Elements	To determine replacem Element Type Code 4 6 7	Filter Ele ICB – 601 HP106L1(ment Part Numb 946 – [ICB Media S) – [Media Selectic	er	n your equipment part number: Example ICB-601946-J HP106L10-10AB HP107L10-3MV
Viscosity	10-5000 cSt ³				
Fluid Compatibility	Petroleum and mineral bas contact factory for compatil skydrol fluid (S9) compatibil	bility with flu	orocarbon seal op	tion. For phosphate e	
Hazardous Environment Options					1, Class 1, Division 1, Group C+D. Call ical cord or cord reel will be included.
Filter Sizing Guidelines	See page 174 for LFW filter	sizing guideli	ines.		
¹ Dimensions are approxima	ations taken from base model and will	varv according to	ontions chosen		

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²Air consumption values are estimated maximums and will vary with regulator setting. ³When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

FSW Part Number Builder

FSW			
Flow Rate	Element Type Element Length Indicator	Power Options Special Options Media Seal	
Flow Rate ¹	02 0.2 gpm (0.75 lpm) 05 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 5 5 gpm (18.9 lpm)		
Element Type		sid (1.7 bard) integral element bypass sid (3.4 bard) integral element bypass	
Element Length	10 L10 single length filter housing	g and element	
∆P Indicator	 D 22 psid visual gauge + electric E 22 psid visual gauge F 45 psid visual gauge + electric G 45 psid visual gauge P³ 2 pressure gages (industrial light) 	switch	
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 12 120 V ac, 1P 22 208-230 V ac, 1P 23 208-230 V ac, 3P 46 460-480 V ac, 3P 57 575 V ac, 3P	50 Hz, 1450 RPM Pneumatic 11 110 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & flow meter included. 21 220 V ac, 1P motor & PD pump. FRL & flow meter included. 30 380-440 V ac, 3P flow meter included. 52 525 V ac, 3P flow meter included.	
		ision 1, Group C+D per NEC 501 – Ready for outdoor use listed above. Not available with (00) Pneumatic Option	
Special Options	 B Complete filter bypass line C CE marked for machinery safe F Filter element ΔP gauge with t J Add pressure gauge between N PM-1 ready (plumbing only) O On-board PM-1 particle monit P9⁴ Phosphate ester fluid compation 	Cut and follower needleUCUL and/or CSA marked starter enclosure for Capump & filter assemblyVLifting eye kitWAutomatic air bleed valvetor & clean oil indicator lightYVFD variable speed motor frequency control	anada
Media	G8 Dualglass	G8 Dualglass + water removal Stainless wire mesh	
Selection	$\begin{array}{lll} \textbf{05M} & \beta 0.9_{[C]} \geq 1000, \ \beta 1 \geq 200 \\ \textbf{1M} & \beta 2.5_{[C]} \geq 1000, \ \beta 1 \geq 200 \\ \textbf{3M} & \beta 5_{[C]} \geq 1000, \ \beta 3 \geq 200 \\ \textbf{6M} & \beta 7_{[C]} \geq 1000, \ \beta 6 \geq 200 \\ \textbf{10M} & \beta 12_{[C]} \geq 1000, \ \beta 12 \geq 200 \\ \textbf{16M} & \beta 17_{[C]} \geq 1000, \ \beta 17 \geq 200 \\ \textbf{25M} & \beta 22_{[C]} \geq 1000, \ \beta 25 \geq 200 \\ \end{array}$	1A $\beta 2.5_{[C]} \ge 1000, \beta 1 \ge 200$ 25W 25μ nominal3A $\beta 5_{[C]} \ge 1000, \beta 3 \ge 200$ 40W 40μ nominal6A $\beta 7_{[C]} \ge 1000, \beta 6 \ge 200$ 74W 74μ nominal10A $\beta 12_{[C]} \ge 1000, \beta 12 \ge 200$ 149W 149μ nominal25A $\beta 22_{[C]} \ge 1000, \beta 25 \ge 200$ 149W	
	VTM	ICB – max reservoir size	
	VTM710 ⁶ β0.9 _[C] ≥ 1000 particulate, insoluble oxidation by-product and water removal media	ICBA ⁷ Phosphate ester – 150 gal (567 liters) ICBJ ⁷ Jet lube aeroderivative – 100 gal (376 liters) ICBT ⁷ Specified fluids – 600 gal (2271 liters) ICBV ⁷ Mineral based R&O turbine/compressor lube oil – 400 gal (1514 liters)	
Seals	 B Nitrile (Buna) V Fluorocarbon E-WS EPR seals + stainless steel sup 	pport mesh	

²Compatible only with Flow Rate "02" and ICB Media Selection.

³Required when selected with ICB media from Element Type.

When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. Only available on HP107 series elements. Flow rate should not exceed 4 gpm (15 lpm) for HP107L10-VTM710* elements.

⁷Compatible only with Flow Rate "02" and Element Type "4"

67

FCL High Viscosity Filter Cart

A self contained solution for high viscosity bulk oil handling, fluid transfer and reservoir or gearbox conditioning.

Ideal for higher viscosity lube oil and highly contaminated fuel and hydraulic oil.

hyprofiltration.com/FCL

Built in versatility.

From cold weather to cold starts, the FCL is engineered to easily handle almost any job you can throw at it. Rugged construction including the heavy duty, oversized filter housing and cast iron gear pump with internal relief all come together so that you can be sure the FCL will tackle your application with ease.

Filtration starts with the filter.

The oversized coreless filter element in every FCL delivers lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass so with every filter change you get a new bypass along with peace of mind.

Unmatched on the move.

Non-shredding wheels, optional off-road, heavy duty tires, and easy to maneuver cart design with ergonomic handle mean you get powerful filtration exactly when and where you need it.

Setting the new standard.

Sampling is no longer an option, it's a necessity. That's why every FCL comes standard with upstream and downstream sample ports located in the proper positions for best practice oil sampling. You'll get consistently accurate readings and a first hand view at just how well your FCL is working.

With options to make your job easier.

Use the FCL to pump out your gearbox or to ease cold starts and get your system up to temperature faster with the optional complete filter bypass line. Add on the PM-1 Particle Monitor to see real time ISO Codes of your fluid and you'll be amazed to watch how effective your FCL will be.

Completely customizable.

Tailor your FCL specifically to your application with options including pneumatic or explosion proof models, CE and CUL marks, and stainless steel construction for safety and compatibility with your existing systems. And if you're nice, we'll even let you trick it out with a custom paint job.

FCL Specifications

Connections	Inlet			, ,		351 lbs (159 kg)				
	FCL05-FCL5: 1" male JIC FCL10: 1.25" male JIC (3) FCL20-FCL30: 1.5" male	^{7°} flare)	Outlet FCL05-FCL10: 1" m FCL20-FCL30: 1.25'	ale JIC (37° flare) ' male JIC (37° flare)	FCL10:	L5: 1" x 10 ft (2.4 m) 1.25" x 10 ft (2.4 m) suction 1" x 10 ft (2.4 m) discharge L30:1.5" x 10 ft (2.4 m) suction 1.25" x 10 ft (2.4 m) discharge				
Tomporaturo	Fluid Temperature 30°F to 225°F (0°C to 105°C)			Ambient Tempera -4°F to 104°F (-20C to 40C)	ture					
Construction	Housing Carbon steel with industrial coating	Hoses Reinforce	ed synthetic	Wands Stainless steel						
	TEFC, 56-215 frame 0.5-3 hp, 1450-1750 RPN	/l, see Appendix	for amp ratings.							
Motor Starter	MSP (motor starter/prot	ector) in an IP65	5, aluminum enclosu	re with short circuit a	nd overload	d protection.				
Connection	Voltages 230 V ac and under, single phase: 35' (11 m) retractable cord reel included. NEMA 5-15 plug installed on Power Option 12. Voltages over 230 V ac: 35' (11 m) loose cord included.									
	Cast iron, positive displacement gear pump with internal relief. Maximum pressure on pump inlet 15 psi (1 bar). Consult factory for higher pressures.									
Pump Bypass	Full bypass at 150 psi (1	0 bar)²								
I I I CUI I UC	~40 cfm @ 80 psi ³ 35' (11 m) retractable ai	r hose included v	when pneumatic opt	ion selected. Replace	s 35' (11m)	electric cord reel.				
Description	M G8 Dualglass, our latest generation of DFE rated performance glass med all hydraulic & lubricatic fluids. $βx_{[C]} \ge 1000$ ($βx \ge$, high performa ia for combine n scrim. βx	ance media	W Stainless steel wire media $\beta x_{[C]} \ge 2$ (βx \ge	mesh ≥ 2)	VTM $\beta 0.9_{[C]} \ge 1000 \text{ particulate,}$ insoluble oxidation by-product and water removal media				
Elements	Element Type Code 5 6	F ilter Element F HP105L[Length HP106L[Length	Part Number Code] – [Media Sele Code] – [Media Sele	nding codes from ction Code][Seal Cod ction Code][Seal Cod ction Code][Seal Cod	e] e]	ipment part number: Example HP105L36–6AB HP106L18–10MV HP107L36–VTM710V				
	82	HP8314L[Length	n Code] – [Media Sel	ection Code][Seal Co ection Code][Seal Co ection Code][Seal Co	de]	HP8314L39–25WV HP8314L16–12MB HP8314L39–16ME–WS				
Viscosity	2-5000 cSt ⁴									
Composibility	Petroleum and mineral contact factory for comp skydrol fluid (S9) compa	patibility with flu	orocarbon seal optic	on. For phosphate est						
						, Division 1, Group C+D. Call or cord reel will be included.				
Filter Sizing Guidelines	See page 170 for LF filte	r sizing guideline	es							

²Dimensions are approximations taken from base model and will vary according to options chosen. ²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure.

Air consumption values are estimated maximums and will vary with regulator setting. When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

Ð

FCL Part Number Builder

71

FCL Flow Rate	Element Type Element Length Indicator Power Options Hose Special Options Media Seal
	Connection
Flow Rate ¹	05 0.5 gpm (1.7 lpm) 10 10 gpm (37.9 lpm) 1 1 gpm (3.7 lpm) 20 20 gpm (75.7 lpm) 2 2 gpm (7.5 lpm) 30 30 gpm (114 lpm) 5 5 gpm (18.9 lpm) 30 30 gpm (114 lpm)
Element Type	5 HP105 - no bypass 8X HP8314 - no bypass 6 HP106 - 25 psid (1.7 bard) integral element bypass 82 HP8314 - 25 psid (1.7 bard) integral housing bypass 7 HP107 - 50 psid (3.4 bard) integral element bypass 85 HP8314 - 50 psid (3.4 bard) integral housing bypass
Element Length	 18² L18 single length filter housing and coreless element 36² L36 single length filter housing and coreless element 39² L39 single length filter housing and coreless element
ΔP Indicator	D22 psid visual gauge + electric switchH65 psid visual gauge + electric switchE22 psid visual gaugeJ65 psid visual gauge (elements 5 or 8* only)F45 psid visual gauge + electric switchP2 pressure gages (industrial liquid filled)G45 psid visual gaugeP2 pressure gages (industrial liquid filled)
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & flow meter included. 22 208-230 V ac, 1P 21 220 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & flow meter included. 23 208-230 V ac, 3P 40 380-440 V ac, 3P flow meter included. 46 460-480 V ac, 3P 52 525 V ac, 3P flow meter included.
	Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor useX_Add X prefix to power option listed above. Not available with (00) Pneumatic Option.
Hose Connection	 G Female BSPP swivel hose ends, no wands S Female JIC swivel hose ends, no wands W Female JIC swivel hose ends, with wands
Special Options	BComplete filter bypass lineNPM-1 ready (plumbing only)CC E marked for machinery safety directive 2006/42/ECOOn-board PM-1 particle monitor & clean oil indicator lightDHigh filter ΔP auto shutdownP93Phosphate ester fluid compatibility modificationE100 mesh cast iron basket strainerRSpill retention pan with wheels (industrial coated steel)FFilter element ΔP gauge with tattle tale follower needleS4All wetted components 304 or higher stainless steelGSpill retention pan with fork guides (industrial coated steel)S4All wetted components for rugged environmentH110' (3 m) return line hose extensionT6Foam filled off-road tires for rugged environmentH220' (6 m) return line hose extensionUCUL and/or CSA marked starter enclosure for CanadaJAdd pressure gauge between pump & filter assemblyWAutomatic air bleed valveKHP75L8-149W Spin-On suction strainerYVFD variable speed motor frequency controlLHigh filter element ΔP indicator lightZOn site start-up trainingMTotal system flow meter (120 cSt max)F
Media Selection	$ \begin{array}{ c c c c c } \hline G8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	VTM VTM710 ^{\circ} $\beta 0.9_{rcl} \ge 1000$ particulate, insoluble oxidation by-product and water removal media
Seals	 B Nitrile (Buna) V Fluorocarbon E-WS EPR seals + stainless steel support mesh

¹Nominal flow rates at 60 Hz motor speeds.

²Compatibility will be based on Element Type selection. For elements HP105, HP106, and HP107, use Length code 18 or 36. Length codes 16 and 39 only compatible with HP8314. ³When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.

⁴With exception to cast iron gear pump.

*When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. *When selected, front casters of unit will be replaced with stationary feet. ?For elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A. *Only available on HP107 series elements. Flow rate should not exceed 16 gpm (60 lpm) for HP107L36-VTM710* elements and 8 gpm (30 lpm) for HP107L18-VTM710* elements.

HS Heater Skids

72

Designed to achieve target ISO Codes and safely heat hydraulic and lube oils, the HS is a fully self-contained heating and filtration solution ideal for service applications, mass fluid transfers, and preheating systems before they come online.

Completely customizable for hydraulic fluids and high viscosity lubrication oils up to ISO VG 680.

hyprofiltration.com/HS

More than your standard heater skid.

Whether you're performing a high velocity flush or preheating your system before it comes online, knowing your fluids are clean is the first step in extending your system and components' lifespans. HS heater skids come standard with properly positioned sample ports both up and downstream of the filter so you get consistently accurate readings and the knowledge that your system is operating as efficiently as possible.

Rock solid from the ground up.

Standard carbon steel spill retention pans with fork guides provide a sturdy base to contain everything you need together in a single package. Add the 6" caster option for increased mobility or even select options for CE or CUL markings to meet required safety standards.

You can't beat the heat.

With no direct contact with the heating element, your fluid will safely and quickly get up to temperature without the risk of burning. The programmable temperature control and integral no-flow switch prevent oil damage and allow you to heat your fluids at your own pace. And what's more: all this comes standard on every HS.

Take control of your systems.

Smart relay enabled controls make the HS series heater skids easy to operate with just the push of a button. Take it one step further and select the optional PLC touch screen and make accessing real time data as easy as using that smartphone of yours.

Filtration starts with the filter.

Within the housing on every HS is a powerful tool to help you get the most of your system and protect your critical components from particulate erosion. Media options down to $\beta 2.5_{[C]} \ge 1000$ on the oversized filter element deliver lower ISO Codes over longer periods of time, letting you clean your new or in use oil to ensure long gear and bearing life.

Fits like a glove.

Designed and built specifically to meet your system's needs, HS heater skids can be completely customized so you get the powerful heating and filtration you need for that mass fluid transfer along with all the options you want to make the job easier than ever.

HS Specifications

Dimensions	Consult factory with model n	umber for dimensions and cor	nection sizes.	
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)	
Materials of Construction	Housing Carbon steel with industrial coating	Tray Carbon steel with industrial coating	Plumbing Carbon steel with industrial coating	Heater Aluminum low watt density fin tube
Electric Motor	• TEFC with overload protection	n		
Pump	Cast iron, positive displaceme	ent gear pump with internal re	lief. Maximum pressure on pur	np inlet 15 psi (1 bar).
Pump Relief Setting	85 psi (5.86 bar)			
Media Description	M G8 Dualglass, our latest gene high performance glass medi & lubrication fluids. $βx_{[C]} \ge 10$	ia for all hydraulic	W Stainless steel wire mesh me	edia βx _[C] ≥ 2 (βx ≥ 2)
Replacement Elements	To determine replaceme Element Type Code LF7 LF8			quipment part number: Example HP107L36–25MV HP8314L16–12MB
Fluid Compatibility		d fluids (standard). For specifie ster (P9) or skydrol fluid (S9) co		r compatibility with fluorocarbon ibility from special options.
Filter Sizing Guidelines	See page 170 for LF filter sizir	ng guidelines		

HS Part Number Builder

HS Flow Rate	Pow	er Option Element Type Media Selection Seals Heat Ca	apacity	Special Options
Flow Rate ¹	3 5 10 15	3 gpm (11.4 lpm) 5 gpm (18.9 lpm) 10 gpm (37.9 lpm) 15 gpm (56.8 lpm)	20 30 45 60	20 gpm (75.7 lpm) 30 gpm (114 lpm) 45 gpm (170 lpm) 60 gpm (225 lpm)
Power Options	60 F E3 23 46 57	IZ 230 V ac, 1P ² 230 V ac, 3P 460-480 V ac, 3P 575 V ac, 3P	50 F E2 22 38 41	Hz 220 V ac, 1P ² 220 V ac, 3P 380 V ac, 3P 415 V ac, 3P
Element Type	LF7 LF8 X	LF housing with HP107L36 filter coreless element with LF housing with HP8314L39 filter coreless element wit No filter housing		
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stainless steel support mesh		
Media Selection	1M 3M 6M 10M 16M	$ \begin{aligned} \beta_{2.5}_{[c]} ≥ 1000, \beta_{1} ≥ 200 \\ \beta_{5}_{[c]} ≥ 1000, \beta_{3} ≥ 200 \\ \beta_{7}_{[c]} ≥ 1000, \beta_{6} ≥ 200 \\ \beta_{12}_{[c]} ≥ 1000, \beta_{12} ≥ 200 \\ \beta_{12}_{[c]} ≥ 1000, \beta_{12} ≥ 200 \\ \beta_{12}_{[c]} ≥ 1000, \beta_{17} ≥ 200 \\ \beta_{22}_{[c]} ≥ 1000, \beta_{25} ≥ 200 \end{aligned} $	25W 40W 74W	inless wire mesh 25μ nominal 40μ nominal 74μ nominal V 149μ nominal
Heat Capacity	4 9 12 24	1 x 4.5 kw heater 1 x 9 kw heater 1 x 12 kw heater 2 x 12 kw heaters	36 48 64	3 x 12 kw heaters 4 x 12 kw heaters 4 x 16 kw heaters
Special Options	6 B C D J M O	6" (15 cm) casters Basket strainer CE marked for machinery safety directive 2006/42/EC High filter element ΔP indicator light Individual heater selector switch Discharge line visual flow meter On-board PM-1 particle monitor	P9 ⁴ S S9 ⁵ T U V Y	Phosphate ester fluid compatibility modification 304 stainless steel filter vessels Skydrol fluid compatibility modification Hose kit (suction/return hoses & wands) 50' (13 m) electrical cord (no plug) Inlet control valve N/C solenoid VFD variable speed motor frequency control

¹Nominal flow rates at 60 Hz motor speeds.

¹Nominal flow rates at 60 Hz motor speeds.
 ²Option only available when coupled with 4 kw heater option and 3 or 5 gpm max flow rate unit.
 ³For elements HP8314, use 12M for media code in place of 10M.
 ⁴When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.
 ⁵When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

Diesel Contamination Types, Removal & Prevention

There are three main types of contamination related to Diesel fuels which can be introduced at any and all stages of the supply chain. To protect your systems and components, these contaminants must be removed prior to introduction into your system or you risk exposing your fuel injectors, fuel pumps, and every part of your system to catastrophic wear and premature failure. When today's high pressure combustion engines fail, contamination is typically to blame. Hard particles, water and microbial growth are the primary contamination culprits that must be removed from diesel fuel to prevent fuel injector and pump failure and achieve trouble free operation.

Dirt & Particulate

Ultra fine particles at higher pressures in today's diesel engines can be a major source of fuel injector and pump failures, component wear, and loss of efficiency across entire systems. When particles get jammed inside a metal surface, it cuts a groove as it passes in a process known as scoring. Scoring can be a source of internally generated contamination and cause ISO Codes to increase, leading to the further degradation of system components.

Water

While all diesels contain water to some degree, it is crucial to prevent free water from reaching modern fuel systems as recommended by manufacturers and to prevent both direct and indirect damage caused by water. Water contamination in USLD diesel fuels leads to accelerated microbial growth (more on that below) and contributes to combustion engine failure and fuel efficiency loss. It can also cause the formation of rust, component corrosion and abrasion, etching, cavitation, and can even freeze in cold temperatures.

Microbial

With free water present in diesel fuels, microbial organisms can flourish to form slimes and sludge (soft solids) that clog fuel delivery systems and filters. If microbial growth is prevalent enough, it can even lead to high acidity which corrodes fuel systems and storage tanks, further exacerbating fuel degradation and increasing the likelihood of fuel oxidation. By removing water from diesel fuels, you alter the environment to discourage microbial growths and keep your system operating at peak efficiencies.

Diesel Contamination Solutions 77 Prioritize Diesel Filtration

The first priority when it comes to fuel filtration is to remove the dirt. Expose your engine to dirty fuel and you risk your on-board particulate filter and fuel/water separators becoming clogged, giving you equipment alarms, damage, failures, and a massive headache. All that productivity you've had the last quarter? Kiss that goodbye.

The most effective and efficient way to clean up diesel is to filter remove particulate with high efficiency media filter elements then come in after to remove the water. With effective particulate contamination upstream, coalesce technology, which is featured in all of the systems listed below, removes all free and emulsified water down to saturation point in a single pass. Lucky for you, our diesel systems combine unmatched particulate filtration and water removal into one system to let you focus on the job at hand and leave worrying about contamination behind.

78

90

Whereas hydraulic and lube systems are able to constantly recirc fluids using off-line kidney loops, diesel fuel applications consume fluids – meaning the best option is to condition the fuel is in transit to and from storage tanks, day tanks, service trucks, or as it is dispensed from a service truck or to a fuel rail. Those transition points are the optimal time in which contamination can enter diesel fuels. Ideally, implementing filtration at each step of the way and preventing possible sources of ingression will help rid your fuels of contamination and leave your equipment running to at the highest efficiencies.

COD Diesel Conditioning Systems

CODs offer complete diesel conditioning to remove particulate, water, and bacterial contamination from your diesel. Available in both off-line (kidney loop) and on-line (CODX) systems, CODs utilize high capacity DFE rated filter elements to remove particulate with incredible efficiency upstream of the Coalesce housing, giving you clean, dry fuels and protecting your injectors. Standard models can be sized up to 600 gpm (2271 lpm) to work with diesel powered turbines or down to as few as 5 gpm (19 lpm) for the smallest of diesel reservoirs.

FSLCOD Compact Diesel Conditioning Systems

82 A smaller and more compact alternative to full size COD systems, FSLCODs utilize a condensed design perfect for marine and any applications requiring size restrictions.

FCLCOD Diesel Conditioning Filter Cart

86 For those applications requiring filtration on the go, FCLCOD Diesel Conditioning Filter Carts provide the same unmatched filtration capabilities as the COD and FSLCOD in a mobile platform perfect for facilities and tank farms with multiple diesel storage sites.

CSD Diesel Coalescing In-Line Filter Assembly

Ideal for construction fueling depots, tank farms and common fuel rail applications with particulate filtration already in place, CSD Diesel Coalescing systems provide in-line single pass water removal efficiency down to 50 ppm. Matched to your existing system flow, CSDs give you incredible flexibility for installation and allow you to filter the fuels that pass through.

COD Diesel Conditioning Systems

Remove water and particulate to extend fuel injector life and increase combustion engine fuel efficiency.

Ideal for large mining and construction fueling depots, diesel fueled turbines, backup generators, and smaller day tank dispensing or on-board fueling truck applications. With options for adding nonpowered units to existing fuel dispensing lines, there's a perfect COD for all of your diesel applications.

hyprofiltration.com/COD

Filtration starts with the filter(s).

COD combines high efficiency single pass particulate and water removal to ensure that your fuel is always in spec, eliminating wear related injector failures. Achieve cleanliness below the 18/16/13 ISO Code limit required by engine manufacturers with $\beta 5_{cl} > 1000$ media elements and extend the life of on-board fuel filters that plug and cause replacement downtime that can shut down your entire mining group.

Redefining standard filtration.

For high pressure injectors, water is one of the worst forms of contamination. The solution for your water contamination lies in COD's 100% synthetic coalesce/separator elements that remove all free and emulsified water down to 50 ppm. Your fuel rail and high pressure injectors will be protected and running more efficiently than ever.

Increase fuel efficiency, lower emissions.

Cleaner fuel runs more efficiently and with lower emissions, yielding better injector performance and life and can even lead to lower fuel usage – which translates to bottom line profitability and a drastically lower environmental footprint. Monitor your fuel's condition with properly positioned sample ports before the pre-filter and after the coalesce stage and always know how your filtration is performing.

Take control of your systems.

Smart relay and auto water drain make COD a 24/7 unattended, easy-to-operate solution that functions as an in-line contamination barrier for every drop of fuel that goes into your engines. Optional PLC touchscreen enables custom programming so your COD can purify backup fuel tanks on your schedule and even data log ISO Codes and saturation levels so you know your fuel is clean and reliable when you're on and off the clock.

Integrated results.

For fuel delivery systems already in place, the CODX non-powered skids are the perfect addition for seamless integration and contain all the contamination removal technology of powered COD units. Ideal for fueling depots, bulk fuel deliveries, upgrading common fuel rails, on-board engine and marine applications.

Built to exceed your expectations.

Flexible dimension and process arrangement are available with every COD so you get the perfect contamination solution for your fuel delivery system. Even choose from explosion proof models and color coordinate to fit perfectly with your existing safety standards for the ultimate system in diesel conditioning.

COD Specifications

Model	COD5-10-30	COD60-100		COD200	COD300-400	COD500-600
Height ¹	72" (183 cm)	80" (203 cm)		90" (229 cm)	90" (229 cm)	90" (229 cm)
Length ¹	48" (122 cm)	72" (183 cm)		84" (213 cm)	84" (213 cm)	96" (244 cm)
Width ¹	42" (107 cm)	36" (92 cm)		48" (122 cm)	60" (152 cm)	60" (152 cm)
Weight ¹	1200 lbs (454 kg)	2000 lbs (907 kg)		2400 lbs (1089 kg)	3500 lbs (1588 kg)	4200 lbs (1905 kg)
Inlet ²	COD5-10: 1" (2.5 cm) COD30: 1½" (3.8 cm)	2" (5.1 cm)		3" (7.6 cm)	4" (10.2 cm)	5" (12.7 cm) 6" (15.2 cm)
Outlet ²	COD5-10: 1" (2.5 cm) COD30: 1½" (3.8 cm)	1½" (3.8 cm) 2" (5.1 cm)		3" (7.6 cm)	4" (10.2 cm)	5" (12.7 cm) 6" (15.2 cm)
Motor Size	1-5 hp	7.5-10 hp		20 hp	30 hp	40 hp
Pre-Filter Elements	1	1		3	4	4
Coalesce Elements	1 x HP538L38-CSV ³	2 x HP731L39-CI	В	3 x HP731L39-CB	6 x HP731L39-CB	8 x HP731L39-CB
Separator/ Polish Elements	(combination element)	1 x HP582L30-S2	25MB	2 x HP582L30-S25MB	3 x HP582L30-S25MB	5 x HP582L30-S25MB
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambie 40°F to (4°C to			
Materials of Construction	Housings Carbon steel with indus	Frame Carbor	n steel with industrial coa	Tray ating Carbon steel v	<i>v</i> ith industrial coating	
						0
Electric Motor	TEFC motors with overlo	oad protection				
		acement gear pur		internal relief. Maximur higher pressures.	n pressure	
Electric Motor	Cast iron, positive displa	acement gear pur			n pressure	
Electric Motor Pump	Cast iron, positive displa on pump inlet 15 psi (1	acement gear pur bar). Consult facto generation prmance glass & lubrication	Coales	higher pressures.	Separator	ed screen (water barrier
Electric Motor Pump Pump Relief Media	Cast iron, positive displa on pump inlet 15 psi (1 85-100 psi adjustable M G8 Dualglass, our latest of DFE rated, high performedia for all hydraulic 8 fluids. $\beta x_{cc} \ge 1000$ ($\beta x \ge 1000$	acement gear pur bar). Consult factor generation ormance glass & lubrication 200)	Coales	higher pressures.	Separator TEFLON [®] coate	

THE AND A STATE AN

COD Part Number Builder

COD Flow Rate	P	ower Options Seal	Special Option	IS	
Flow Rate ¹	200 300 400	5 gpm (18.9 lpm) 10 gpm (37.9 lpm) 30 gpm (114 lpm) 60 gpm (225 lpm) 100 gpm (379 lpm) 200 gpm (757 lpm) 300 gpm (1135 lpm) 400 gpm (1514 lpm) 500 gpm (1892 lpm) 600 gpm (2271 lpm)			
Power Options	60 12 E2 46 57	Hz 120 V ac, 1P 230 V ac, 1P 460 V ac, 3P 575 V ac, 3P	50 E1 E3 32 38 41 52	Hz 120 V ac, 1P 230 V ac, 1P 320 V ac, 3P 380 V ac, 3P 415 V ac, 3P 525 V ac, 3P	ered wered COD: No pump-motor ation or electrical controls.
Seals	B V	Nitrile (Buna) Fluorocarbon			
Special Options	8 A ³ C H K L M O P Q ⁵ T ³ U X Y Z ³	8" (20 cm) solid wheel Auto water drain (ma Adjustable coalesce v CE marked for machin Manual reset hour mo Sight flow indicator (v Lifting eye kit Water discharge total On-board PM-1 partic PLC touch screen con Maintenance spares a Hose kit (suction & re 50' (15 m) electrical co Explosion proof - mus VFD variable speed m On site start-up traini	nual drain incluc essel bypass loc nery safety direc eter (in addition vheel type) izing meter cle monitor & cle trol (does not in and repair kit turn hoses + wa ord with no plug st specify standa	ean oil indicator light nclude VFD) ands) gards required	

¹Nominal flow rates at 60 Hz motor speeds.

²Suitable for adding to existing fuel delivery system with existing pressure and flow. Auto water drain option is mechanical.

³Recommended option. ⁴Standard option

⁴Standard option.⁴ ⁵Includes fuses, common relay, panel bulb, replacement element set for coalesce chamber & particulate housing.

hyprofiltration.com/COD

HY-PR

81

FSLCOD Marine and Industrial Diesel Filtration Systems

Remove water and particulate to extend fuel injector life and increase combustion engine fuel efficiency.

Ideal for permanent installation on-board sea vessels and diesel applications requiring compact size restrictions.

hyprofiltration.com/FSLCOD

Remove contaminants, protect equipment.

FSLCOD combines high efficiency single pass particulate and water removal to ensure that your fuel is always in spec, eliminating premature injector failures and downtime.

Elements that go beyond industry standard.

With DFE rated particulate filters and 100% synthetic coalesce/ separator elements that remove all free and emulsified water down to 50 ppm, your fuel rail and high pressure injectors will be protected and running more efficiently than ever.

Small has never been bigger.

Coming in at only 1 ft² (30 cm²) of floor space and 34" (86 cm) tall, the FSLCOD is engineered to provide maximum efficiency in minimal space.

Smarter filtration.

Designed for 24/7 unattended operation, FSLCODs with auto water drain technologies, available electrically or mechanically powered, provide you with the safety and security to know your diesel is clean and dry even when you're off the clock.

Increase fuel efficiency, lower emissions.

Cleaner fuel runs more efficiently and with lower emissions, yielding better injector performance and life and leading to lower fuel usage, translating to bottom line profitability and a drastically lower environmental footprint. Monitor your fuels' condition with properly positioned sample ports before the pre-filter and after the coalesce stage and always know how your filtration is performing.

No detail overlooked.

From the cast iron gear pump with internal relief to the space saving design, every component of the FSLCOD is designed to provide you with the highest quality filtration and integrate seamlessly into your systems. So whether you've got a single vessel or an entire fleet, you can rest assured that your diesel is clean and dry.

FSLCOD Specifications

Dimensions ¹	Height 34" (86 cm)	Width 30" (76 c		pth (64 cm)	Weight 285 lbs (129 kg)	
Connections	Inlet FSLCOD5-10: 1" male JIC (37° flare) FSLCOD20: 1¼" male JIC (37° flare)			Outlet 1" male JIC (37° flare)		
Element Configuration	Pre-filter HP60L13-3MV		FSL	Main Filter FSLCOD5-10: HP538L18-CSV FSLCOD20: HP538L38-CSV		
Seals	Fluorocarbon					
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		40°	bient Temperatu F to 104°F C to 40°C)	ire	
Materials of Construction	Housings Carbon steel with indu	strial coating				
Electric Motor	TEFC, 56-184 frame 0.5-2 hp, 1450-1750 RF	PM				
Motor Starter	MSP (motor starter/pr	otector) in an IP6	5, aluminum enclosure wi	th short circuit and	d overload protection.	
Pump			ump with internal relief. N ctory for higher pressures			
Pump Bypass	Full bypass at 150 psi (10 bar) ²				
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³					
Media Description	M G8 Dualglass, our lates of DFE rated, high perf media for all hydraulic fluids. $\beta x_{c_1} \ge 1000$ (βx	ormance glass & lubrication	Coalesce 100% synthetic fiber me		Separator FEFLON® coated screen (water barrier)	
Fluid Compatibility	Petroleum based fuels	, #2 Diesel (stand	lard). For other fuel option	ns contact factory.		
Hazardous Environment Options	Select pneumatic power for IEC, Atex or other r	ered unit (Power equirements. If E	Option 00) or explosion p xplosion Proof option (X	roof NEC Article 50) selected, no elect	01, Class 1, Division 1, Group C+D. Call trical cord or cord reel will be included	

²¹⁰ GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure.

³Air consumption values are estimated maximums and will vary with regulator setting. TEFLON[®] is a registered trademark of DuPont

FSLCOD Part Number Builder 85

FSLCOD	Flow Rate Indicator Power Options Special Options
Flow Rate ¹	5 5 gpm (18.9 lpm) 10 10 gpm (37.9 lpm) 20 ² 20 gpm (75.7 lpm)
ΔP Indicator ³	 D 22 psid visual gauge + electric switch E 22 psid visual gauge
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air 22 208-230 V ac, 1P 21 220 V ac, 1P motor & PD pump. FRL & flow meter included. 23 208-230 V ac, 3P 40 380-440 V ac, 3P flow meter included. 46 460-480 V ac, 3P 52 525 V ac, 3P flow meter included. 57 575 V ac, 3P 52 525 V ac, 3P flow meter included. Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use X_ Add X prefix to power option listed above. Not available with (00) Pneumatic Option.
Special Options	 A1⁴ Electrically powered automatic water drain B Complete filter bypass line C CE marked for machinery safety directive 2006/42/EC D High filter ΔP auto shutdown E 100 mesh cast iron basket strainer F Filter element ΔP gauge with tattle tale follower needle G Spill retention pan with fork guides (industrial coated steel) J Add pressure gauge between pump & filter assembly K HP75L8-149W Spin-On suction strainer L High filter element ΔP indicator light M Total system flow meter (120 CSt max) N PM-1 ready (plumbing only) O⁵ On-board PM-1 particle monitor & clean oil indicator light S⁶ All wetted components 303 or higher stainless steel U CUL and/or CSA marked starter enclosure for Canada W Automatic air bleed valve Z On site start-up training

¹Nominal flow rates at 60 Hz motor speeds. ²20 gpm machine utilizes 36" vessel.

²Cogpin finatime dulizes 30 vessel. ³Coalesce filter only. Particulate filter housing is equipped with pop-up differential indicator. ⁴Requires Electric Power Option. ⁵PM-1 will not function properly in the presence of free or emulsified water at or above saturation point. If selected, PM-1 is installed downstream of the filtration. ⁶With exception to cast iron gear pump.

hyprofiltration.com/FSLCOD

FCLCOD Diesel Conditioning Filter Cart

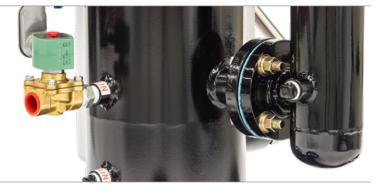
Remove water and particulate to extend fuel injector life and increase combustion engine fuel efficiency.

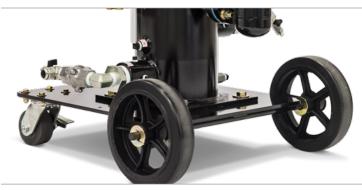
Ideal for service oriented stand by diesel tanks and marine applications.

hyprofiltration.com/FCLCOD

Take control of your systems.

FCLCOD filter carts are constructed to be powerful, dependable, and easy to use. Whether you've got multiple diesel reservoirs or simply need your filtration on the move, conditioning your fuels has never been easier. Add automatic water drain and your FCLCOD becomes a powerhouse that does the work for you.




Filtration starts with the filter(s).

FCLCOD combines high efficiency single pass particulate and water removal to ensure that your fuel is always in spec, eliminating premature injector failures and downtime. With DFE rated particulate filters and 100% synthetic coalesce/ separator elements that remove all free and emulsified water down to 50 ppm, your fuel rail and high pressure injectors will be protected and running more efficiently than ever.

Never stops working.

Designed for 24/7 unattended operation, FCLCODs with auto water drain technologies, available electrically or mechanically powered, provide you with the safety and security to know your diesel is clean and dry even when you're off the clock.

Unmatched on the move.

Non-shredding wheels, optional off-road heavy duty tires and easy to maneuver cart design with ergonomic handle mean you get powerful filtration exactly when and where you need it.

Increase fuel efficiency, lower emissions.

Cleaner fuel runs more efficiently and with lower emissions, yielding better injector performance and life and can even lead to lower fuel usage which translates to bottom line profitability and a drastically lower environmental footprint. Monitor your fuel's condition with properly positioned sample ports before the pre-filter and after the coalesce stage and always know how your filtration is performing.

Completely customizable.

Flexible dimension and process arrangement are available with every FCLCOD so you get the perfect contamination solution for your fuel delivery system. Even choose from explosion proof models and color coordinate to fit perfectly with your existing safety standards for the ultimate mobile system in diesel conditioning.

FCLCOD Specifications

Dimensions ¹		idth).5″	Depth 29" (74 cm)	Weight 379 lbs (172 kg)
Connections	Inlet FCLCOD5-FCLCOD10: 1" male JIC (37 FCLCOD20: 11/4" male JIC (37° flar		CLCOD10: 1" male JIC (37° flare) 1¼" male JIC (37° flare)	Hoses FCLCOD5-FCLCOD10: 1" x 10 ft (2.4 m) FCLCOD20: 1¼" x 10 ft (2.4 m)
Element Configuration	Pre-filter HP75L8-3MV		Main Filter HP538L38-CSV	
Seals	Fluorocarbon			
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Tempera 40°F to 104°F (4°C to 40°C)	iture
Materials of Construction	Housings Carbon steel with industrial coati	Hoses ng Reinforced	synthetic	Wands Stainless steel
Electric Motor	TEFC, 56-145 frame 0.5-2 hp, 1450-1750 RPM			
Motor Starter	MSP (motor starter/protector) in	an IP65, aluminum	enclosure with short circuit a	and overload protection.
Electric Connection	Voltages 230 V ac and under, single included. NEMA 5-15 plug installed Voltages over 230 V ac: 35' (11 m	on Power Option 12		
Pump	Cast iron, positive displacement a on pump inlet 15 psi (1 bar). Con			re
Pump Bypass	Full bypass at 150 psi (10 bar) ²			
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³ 35' (11 m) retractable air hose ind	luded when pneum	natic option selected. Replace	es 35' (11m) electric cord reel.
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance g media for all hydraulic & lubricat fluids. $βx_{cc} \ge 1000$ ($βx \ge 200$)	glass	netic fiber media	Separator TEFLON [®] coated screen (water barrier)
Fluid Compatibility	Petroleum based fuels, #2 Diesel	(standard). For oth	er fuel options contact factor	y.
Hazardous Environment Options				501, Class 1, Division 1, Group C+D. Call ectrical cord or cord reel will be included

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure.

³Air consumption values are estimated maximums and will vary with regulator setting.

TEFLON® is a registered trademark of DuPont.

FCLCOD Part Number Builder

FCLCOD		
	Flow Rate Indicator Power Options Hose Special Options Connection	
Flow Rate ¹	5 5 gpm (18.9 lpm) 10 10 gpm (37.9 lpm) 20 20 gpm (75.7 lpm)	
ΔP Indicator ²	 D 22 psid visual gauge + electric switch E 22 psid visual gauge 	
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air 22 208-230 V ac, 1P 21 220 V ac, 1P motor & PD pump. FRL air 23 208-230 V ac, 3P 40 380-440 V ac, 3P flow meter included. 46 460-480 V ac, 3P 52 525 V ac, 3P 575 V ac, 3P	
	Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use X_ Add X prefix to power option listed above. Not available with (00) Pneumatic Option.	
Hose Connection	 G Female BSPP swivel hose ends, no wands S Female JIC swivel hose ends, no wands W Female JIC swivel hose ends, with wands 	
Special	 A1 Electrically powered automatic water drain B Complete filter bypass line C CE marked for machinery safety directive 2006/42/EC 	

⁻ ¹Nominal flow rates at 60 Hz motor speeds. ²Coalesce filter only. Particulate filter housing is equipped with sliding differential indicator. ³PM-1 will not function properly in the presence of free or emulsified water at or above saturation point. If selected, PM-1 is installed downstream of the filtration.

⁴With exception to cast iron gear pump.

89

CSD Diesel Coalesce Non-Powered Filtration System

Remove water to extend fuel injector life and increase combustion fuel efficiency. The CSD is designed for direct integration into fuel delivery systems with pump flow and pressure already in place for easy, streamlined water removal through your existing system. Using high efficiency coalesce and separating media, the CSD will keep diesel free from water contamination down to 50 ppm in a single pass.

Ideal for construction fueling depots, tank farms and common fuel rail applications.

HY-PRO

hyprofiltration.com/CSD

Protect your uptime.

By removing water from your diesel systems, you're providing the best environment for your equipment to operate efficiently and helping to prevent breakdowns and damage, saving you time and effort. CSD systems rapidly remove water down to saturation point, protecting your systems and letting you focus on the job at hand.

Media matters.

Cellulose media is known to break down under high water content, resulting in media migration and loss of coalescence efficiency. CSD's 100% synthetic coalesce and separator elements contain no cellulose and feature a pleated synthetic configuration to maximize surface area and ensure your fuel rail and high pressure injectors will be protected and running more efficiently than ever.

Don't quit your day job.

Designed for 24/7 unattended operation, CSDs with auto water drain technologies, available mechanically or electrically powered, provide you with the safety and security to know your diesel is clean and dry so you can forget worrying about your filtration and focus on the job at hand.

Setting the new standard.

Sampling and preventative maintenance are no longer optional, they're a necessity. Knowing your diesel is clean is the first step in prolonging the life of your fuel injectors and critical components. CSD series housings come standard with easy-to-access sample ports in their proper positions so you can always know you're putting clean, dry diesel into your systems.

Combined filtration, double the power.

A properly sized Hy-Pro CSD plus Hy-Pro high efficiency particulate filtration will deliver diesel fuel cleanliness codes of 15/13/10 and better while maintaining water levels at 50 ppm. Pair your CSD with an LF housing in-line on your system and rest assured knowing your fuel injectors are protected.

Integrated results.

Installing CSDs in-line on your current system means you get powerful filtration exactly where you need it – directly upstream of your critical components. With standard models ranging up to 600 gpm, your diesel will be dry and components protected whether you're on a small diesel tank farm or a massive diesel fired turbine.

91

CSD Specifications

Model	CSD30	CSD120	CSD200	CSD400	CSD600
Max Flow Rate	30 gpm (114 lpm)	120 gpm (454 lpm)	200 gpm (757 lpm)	400 gpm (1514 lpm)	600 gpm (2271 lpm)
Weight ¹	164 lbs (74 kg)	319 lbs (177 kg)	546 lbs (248 kg)	1097 lbs (498 kg)	1155 lbs (524 kg)
Height ¹	62" (158 cm)	74" (188 cm)	82" (209 cm)	82" (209 cm)	82" (209 cm)
Width ¹	22" (56 cm)	32" (82 cm)	36" (92 cm)	48" (122 cm)	48" (122 cm)
Length ¹	22" (56 cm)	27" (69 cm)	32" (82 cm)	40" (102 cm)	40" (102 cm)
Coalesce Elements	1 x HP538L38-CSV ²	2 x HP731L39-CB	3 x HP731L39-CB	6 x HP731L39-CB	8 x HP731L39-CB
Separator/ Polish Elements	(combination element)	1 x HP582L30-S25MB	2 x HP582L30-S25MB	3 x HP582L30-S25MB	5 x HP582L30-S25MB
Materials of Construction	Housing Industrial coated steel	Tray Industrial	coated steel	Hoses Reinforced synth	netic
Media Description	Coalesce 100% synthetic fiber me	edia	Separator TEFLON® c	coated screen (water barı	rier)
Fluid Compatibility	Petroleum based fuels,	#2 Diesel (standard). Fo	r other fuel options conta	act factory.	

¹Weights and dimensions are approximations taken from base model and will vary according to options chosen. ²HP538L38-CSV element combines coacee and separator element functions into a single element.

TEFLON® is a registered trademark of DuPont.

CSD Part Number Builder

Flow Rate¹

30 gpm (114 lpm) 30 120 120 gpm (454 lpm) 200 200 gpm (757 lpm) **400** 400 gpm (1514 lpm) 600 600 gpm (2271 lpm)

Port Connections	B2 C2 C3 D2 D3 D4 D5 D6 D8 D10 F2 F3 F4 F6 F8 F10 F12 N2	Connection Type 2" BSPP 2" SAE Code 61 flange 3" SAE Code 61 flange DN50 DIN flange DN65 DIN flange DN100 DIN flange DN125 DIN flange DN150 DIN flange DN200 DIN flange 2" ANSI flange 4" ANSI flange 6" ANSI flange 10" ANSI flange 12" ANSI flange 2" NPT	CSD Series Availability 30-120 30-120 30-120 30-120 200-400 200-400 200-600 200-600 30-120 30-120 30-120 30-120 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600
Seals	B V	Nitrile (Buna) [:] Fluorocarbon	
Special Options	AX AE AE1 AE2 AE3 B M T	Auto water drain - electrica Auto water drain - electrica	lly operated solenoid valve (120 V ac, 1P, 60Hz ³) lly operated solenoid valve (110 V ac, 1P, 50Hz ³) lly operated solenoid valve (230 V ac, 1P, 60Hz ³) lly operated solenoid valve (220 V ac, 1P, 50Hz ³) meter

¹Not suitable for bio diesel. ²Suitable for adding to existing fuel delivery system with existing pressure and flow. Auto water drain option is mechanical. ³Requires power supply.

⁴Recommended options.

hyprofiltration.com/CSD

HY-PR

93

What is Varnish?

Varnish formation

Lubricant varnish is defined per ASTM D02.C01 WK27308 as a thin, hard, lustrous, oil-insoluble deposit, composed primarily of organic residue, and most readily definable by color intensity. It is not easily removed by wiping with a clean, dry, soft, lint-free wiping material and is resistant to saturated (light hydrocarbon) solvents. Its color may vary, but it usually appears in gray, brown, or amber hues. Varnish begins its life as a soluble degradation product before converting to an insoluble particulate form. The process responsible for the deposition of particulate varnish is reversible.

Lubricant solvency

Under normal operating conditions, turbine lubricants are subjected to oxidation, which produces polar molecules, the varnish precursors, from lubricant mineral-oil base stocks. These polar species represent the starting point of the varnish life cycle. As a result, lubricants in service are a complex combination of base stocks, additives, and contaminants.

A lubricant's solvency is defined as its ability to dissolve these distinct components. Everything in the oil has a finite solubility which is affected by numerous variables (molecular polarity, contaminant levels, temperature, etc). When the solubility of a molecule is low, the lubricant cannot dissolve those components which then release from the fluid to form deposits. However, when the solubility of a molecule is high, the lubricant will have a high capacity to dissolve it, avoiding the formation of varnish deposits.

Contaminant levels

As the oil degrades and oxidation products accumulate, the solvency of the fluid decreases accordingly. Beyond the saturation point, the fluid can no longer dissolve additional varnish precursors formed by continuing oxidation and varnish will begin to precipitate from the solution.

Temperature

Oil temperature directly affects the solubilities of all the species dissolved within it. As temperature decreases, so too does the solubility of varnish and its precursors. Because metals are more polar than the lubricant's base stock, the precipitated polar varnishes prefer to adhere to the metal and form potentially damaging deposits. When the level of varnish precursors in a lubricant is at (or near) the fluid's saturation point, varnishing in cooler regions is very likely to occur.

Types of varnish

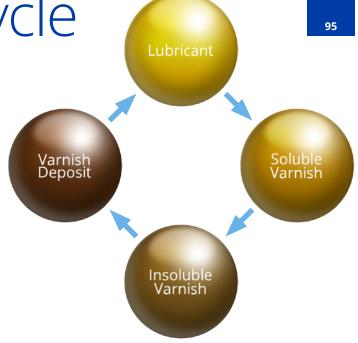
The images below depict four different formations of varnish as they can appear in different types and locations throughout a lube system. While this list is not comprehensive, the types listed below are among the most commonly seen.

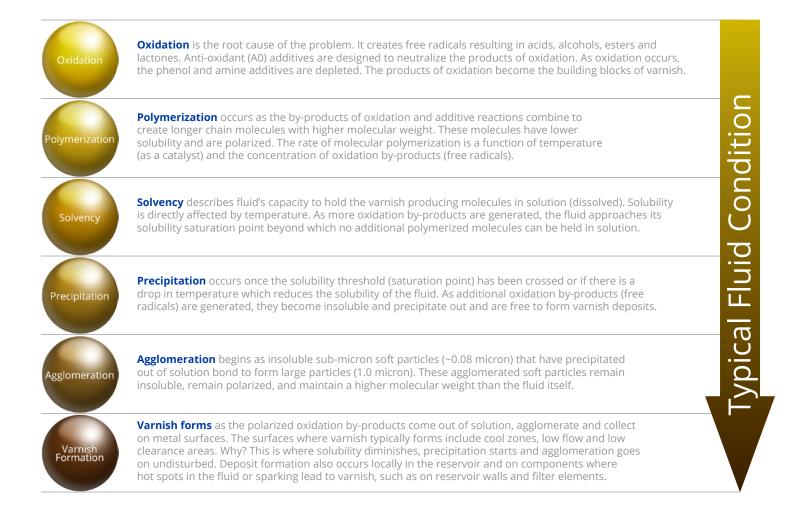
Varnishing can cause costly turbine downtime. An easy solution to combat this is to determine the lubricant's potential for varnish formation. Two of the most widely adopted techniques are QSA[®] (quantitative spectrophotometric analysis) and the standardized MPC (membrane patch colorimetry, ASTM 7843).

Both methods can produce results which vary significantly depending upon the length of time during which the oil sample was "aged." Indeed, longer sample aging periods produce higher MPC values, suggesting that degradation of lubricants continues in the sample bottle. For this reason, the ASTM MPC method suggests all samples be incubated at room temperature for 72 hours after being heated to 140°F (60°C) for 24 hours. This well-defined and standardized aging time has provided inter-laboratory consistency and improved testing repeatability.

The Varnish Cycle

It all starts with oxidation.


Oxidation is an unavoidable chemical reaction between the lubricant base stock and oxygen present in the air surrounding it. Oxidation increases as the operating temperature rises, but the by-products remain dissolved.


When oil moves from hotter regions within the system to cooler ones, the fluid temperature decreases and these precursors begin a physical change to precipitate from solution in the form of soft particulates.

Once formed, varnish particles agglomerate and form deposits which preferentially coat metal surfaces within the reservoir and on components like valves. These deposits are often the cause of unit trips and fail-to-start conditions.

In most cases, however, once varnish deposits form, they can be reabsorbed into the fluid and broken down if the solvency of the lubricant increases.

The table below breaks down the stages in the process of varnish formation along with the approximate fluid color corresponding to each stage.

Strategies to Combat Varnishing

There are two main types of varnish removal systems: those based upon the removal of suspended (insoluble) particles and those based upon the removal of soluble varnish and its precursors.

Anti-oxidant packages, generally consisting of phenols and amines, are usually added to the lubricant as a built-in varnish mitigation strategy. Anti-oxidants limit the rate of oxidative degradation and, therefore, delay varnishing. But these AO packages fail in that they cannot prevent it indefinitely. Although both phenols and amines have anti-oxidant activity on their own, they function more efficiently in concert with one another. While the specific identities and amounts of the anti-oxidants employed varies with different lubricant formulations, the mechanism by which they enhance fluid lifetime remains the same. AO levels deplete continuously which means the fluid needs to be replaced once all AO additives have been consumed.

Insoluble Varnish Removal

Charge agglomeration, electrostatic oil cleaning, or combinations of these techniques are advanced forms of particulate removal. These techniques remove fine particulates that are suspended within the fluid including insoluble varnish particles. However, these technologies are only helpful once the insoluble particles form. Soluble varnish and soluble varnish precursors are able to return to the turbine and become varnish deposits as seen on the components to the right.

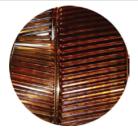
Soluble Varnish Removal

Soluble Varnish Removal (SVR^{**}) systems use specialized Ion Charge Bonding (ICB^{**}) resins that contain billions of polar sites capable of adsorbing soluble varnish and its precursors. This adsorption relies on a preferential molecular interaction between the polar varnish molecules and the polar sites present within the resin. Just as insoluble by-products prefer metal surfaces to being suspended in the fluid, soluble by-products prefer ICB resin than to remain dissolved within the fluid.

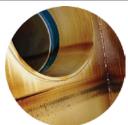
Conventional ion-exchange resins function by exchanging one chemical for another. ICB resins are engineered to adsorb the entire contaminant without returning any others to the fluid. A key benefit of the ICB adsorption principle is that harmful oxidation products can be removed at any operating temperature, meaning that SVR systems can be used continuously. The continuous removal of soluble varnish and its precursors ensures that degradation products do not accumulate in the lubricant, eliminating the risk of varnish formation during normal turbine shut down cycles. Moreover, the continuous removal of soluble varnish produces a lubricant with extremely high solvency.

Since the physical changes that resulted in the formation of insoluble varnish particles and deposits are reversible, the high solvency of the SVR treated lubricant forces insoluble varnish already present on turbine surfaces back into the soluble varnish form where they can be adsorbed and removed. With all the remaining oxidation by-products removed, the varnish formation cycle is completely stopped.

Varnish particles and deposits are created from reversible physical changes that begin with soluble oxidation products and end with insoluble deposits. For these changes to be reversible, the chemistry of the deposits has to be similar to the chemistry of the lubricant from which the deposits originated. Normally, once fluid solvency has been increased (by removing soluble varnish at normal operating temperature), deposits will simply dissolve back into the fluid and be removed.


IGV valves and fuel control valves are typically the first problem components

Varnish deposits on filter element


(GE Frame 6B)

Varnish on load gear (Frame 6)

Lube oil reservoir coated (Varnish Deposits)

Filter element cross section (Lacquer Varnish Deposits, Support Tube)

hyprofiltration.com/varnish

Varnish & Acid Scavenging Systems

98

SVR Soluble Varnish Removal Systems

Ideal for large frame turbines where mineral based lube oil and specified synthetics are used. Prevent unit trip and fail-to-start conditions where a common reservoir is used for lube and hydraulic control circuits. ICB media technology treats oil on a molecular level, reversing the chemical process of varnish deposit formation, improving servo valve response time, protecting lube oil anti-oxidant additive packages, removing acids to improve oxidative stability, and improving oil demulsibility. High efficiency post filter removes particles to deliver low ISO Codes while extending the life of main bearing lube, pump discharge and servo pilot filters.

97

FSTO Turbine Oil Varnish Removal Systems

104 A total solution for varnish deposit removal and prevention in mineral based and specified synthetic compressor and small frame turbine lube oil applications subject to varnish deposits in bearings, heat exchangers and control valves. ICB media technology treats lube oil on a molecular level, reversing the chemical process of varnish deposit formation, improving servo valve response time, protecting lube oil anti-oxidant additive package, removing acids to improve oxidative stability, and improving oil demulsibility. VTM post-filter media removes insoluble (suspended) oxidation by-products, water, and hard contamination to achieve incredibly low ISO Codes and clean lube oil.

FSAPE Phosphate Ester Varnish Removal Systems

A dedicated solution for phosphate ester based fluids on turbine control, steel mill hydraulics and other high heat applications. ICB media removes acids formed in phosphate ester (hydrolysis) and dissolved metals leeched into the fluid from Fuller's earth, D-earth and Selexsorb acid remediation technologies which lead to gels, deposits and poor air release in FRFs. ICB also restores fluid resistivity and removes gels and deposits in control valves to improve servo valve response time. VTM mechanical filter element media reduces ISO Codes and extends pump discharge, servo pilot and last chance filter element life. TMRN₂ manages water to 300 ppm and prevents contamination from air ingression. Use FSAPE to avoid unit trip, expensive premature fluid replacement, flushes or bleed and feed routines.

FSJL Aeroderivative Jet Lube Varnish Removal Systems

ECR

Electrostatic

Contamination

Removal Systems

112 Aeroderivative turbines suffer from contamination related variable geometry failures, bearing deposits and premature fluid replacement, all of which can be caused by varnish. ICB media technology removes acids, molecular by-products, and varnish deposits that form during jet lube fluid degradation. TMRN₂ manages water to 300 ppm and prevents contamination from air ingression. VTM mechanical filter element media reduces ISO Codes and extends pump discharge, servo pilot and last chance filter element life. FSL is a total fluid management solution for aeroderivative turbine jet lube applications.

116 The primary application for the ECR is the removal of sub-micron carbon particles that form as a result of micro dieseling in turbine EHC (electrohydraulic control) systems using phosphate ester based fluids. The presence of sub-micron carbon particles is evident by a general darkening of the fluid from its original amber color or by black patch color when patch weight analysis is performed. ISO fluid cleanliness codes might show very clean fluid when sub-micron carbon is present as it is below the threshold particle counting per ISO 11171. Sub-micron carbon carbon can lead to deposits, low resistivity and poor air release properties. ECR is the most effective way to remove the sub-micron carbon particles.

ICB Ionic Charged Bonding Filter Elements

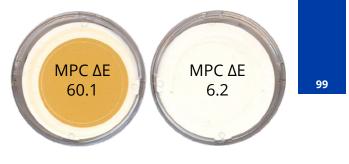
lonic Charged Bonding (ICB) media is used to treat a range of fluids at the molecular level by removing contaminant molecules that form as a by-product of oxidation and fluid degradation. The heavy weight molecules to be removed are polar oxides, acids and other free radicals that result in deposit formation (varnish) and are detrimental to fluid performance. ICB media is designed to selectively remove the contaminant without removing fluid additives. The use of ICB results in fluids that perform better, last longer and yield trouble-free operation for those who are responsible for maintaining them. We apply fluid specific ICB media that remove acids, dissolved metals and varnish while improving important fluid characteristics such as solubility, resistivity and demulsibility.

VTM Particulate, Water, and Oxidation By-product Removal Media

VTM media configuration is a combination of technologies that mechanically removes insoluble (suspended) oxidation by-products that form varnish deposits in additized AW hydraulic oils and EP gear lubricants. VTM adsorbs water and some polar molecules while removing particulate contamination to β 0.9_{ICI} > 1000. Ideal for high heat hydraulic and gearbox lube applications such as plastic injection molding, wind turbine, or coal mill applications. VTM is available in FSW, FSL, and FCL dedicated and portable off-line systems and is used in tandem with ICB media on FSTO, FSA, FSJL, and SVR solutions.

SVR[™] Soluble Varnish Removal

A complete recovery and maintenance solution for mineral-oil based turbine lubricants. SVR targets and removes the dissolved varnish pre-cursors which are the cause of varnish. By removing these waste oxidation by-products, you restore the oils original solvency properties which forces any solid varnish deposits to be dissolved back into the oil where they are removed permanently.



HY-f

Stop varnish related fail-to-starts and unit trips.

SVR attacks the source of the problem on a molecular level, removing the oxidation by-products that form varnish deposits. SVR reverses the chemical process of varnish deposit formation by restoring oil health removing varnish throughout the system and in critical components so your servo valves operate more efficiently than ever.

Advanced media technologies.

Ion Charge Bonding (ICB) removes soluble oxidation by-products and restores demulsibility during normal turbine operation without damaging additive chemistry. With the most advanced media, SVR has 4x more capacity than competing varnish removal systems.

Remove acid.

Acid in turbine oil is by-product of oxidation, a leading pre-cursor to varnish formation. SVR removes acid improving oxidative stability, slowing oxidation rate and dramatically reducing a source of varnish production.

Work with the experts.

With SVR, you'll work alongside industry experts and receive comprehensive oil analysis and results interpretation to provide the best solution to extend your fluid life and make varnish vanish, for good.

Attack the problem, not the symptoms.

Turbine oil is condemned when anti-oxidant (AO) additive levels deplete to 20% of new. A dedicated SVR performs in parallel with AO additives to slow depletion to drastically extend the life of your oil. On top of being the ultimate varnish deposit recovery system, SVR restores and protects oil health and actively prevents new varnish from forming. Once varnish is under control the benefit of longer oil life can be fully realized.

Endless applications.

In addition to a range of options including the PM-1 Particle Monitor, explosion proof models, a range of power options, even stainless steel vessels, SVR can be completely customized to provide the perfect solution for your application.

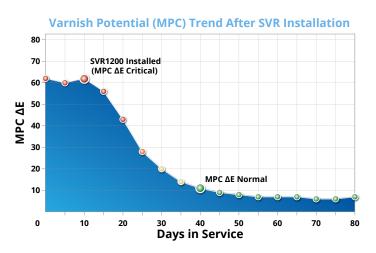
Elements that go beyond industry standard.

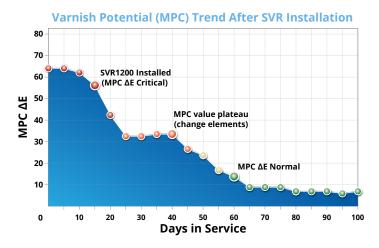
ICB Advanced Resin Technology.

Turbine oil varnish deposits form when oil becomes saturated with oxidation by-products from fluid breakdown. ICB goes where other technologies can't to remove polar oxides on a molecular level. When varnish deposits are affecting servo valve response time, that means the oil is saturated. SVR

addresses this by removing dissolved oxidation byproducts and restoring the oil's solubility. The restored oil dissolves deposits back into solution which can then be removed by the SVR. The process repeats during recovery until the entire system and the oil are varnish free. That's when you see a white patch. Once the varnish is gone, SVR continues to work by removing by-products as they form to prevent future deposits. ICB also slows anti-oxidant additive depletion to boost oil life. ICB is the only technology that treats the dissolved varnish during normal turbine operation to prevent varnish from forming.

HP107 for ISO Code Management.


DFE rated advanced media technologies provide the highest level of particulate capture and retention so your equipment operates unimpeded by contamination. The coreless filter element in every SVR delivers remarkably low ISO Codes, taking the dirt load off of critical system lube and


hydraulic control filter elements (IGV, pump discharge). In addition to particulate control, the HP107 with VTM media also removes the insoluble oxidation byproducts that are suspended in the oil, working hand-in-hand with the ICB media to rapidly reduce varnish potential and restore the health of your oil. The element is oversized to perform over a long element lifespan and to ensure low environmental and bottom line impact. To top it off, the HP107 element comes standard with an integral zero leak bypass so with every filter change, you get a new bypass along with peace of mind.

SVR Quick Guide

Top loading ICB housing with 2 elements stacked	
ICB vessel drain valve	
High efficiency post-filter housing	
SVR outlet	
SVR inlet large suction	
ICB vessel flow balancing valve ICB vessel flow Isolation valve ICB vessel flow control meter Crane for ICB element removal and draining	

The Proven Varnish Solution

MPC ΔE Condition Scale

Normal	Monitor	Abnormal	Critical
<15	16-25	26-35	>36

Figure 1 depicts SVR1200 on a 7FA gas turbine with critically high varnish potential (MPC Δ E) experiencing slow servo valve response time and sticking. SVR had an immediate impact on the 6,200 gallon / 24,000 liter lube reservoir. Within 45 days MPC values were reduced to condition normal.

Starting RULER was 5 meaning only 5% AO remained in the oil, below condemning level. By installing SVR before a fluid change, all varnish deposits were removed before the oil change which allowed new oil to be added to a clean reservoir. If not for the deposit removal, AO in the new oil could have immediately depleted to as low as 65%.

Figure 2 is the restoration of a combustion turbine with heavy varnish deposits where MPC varnish potential dropped to 35 after SVR installation. 40 days into service, the ICB elements were changed as they were fully loaded with oxidation by-product. Once changed, MPC dropped to single digits. In the case of a heavily varnished turbine, 2 to 3 sets of ICB elements might be required to achieve condition normal. Once MPC drops to single digits, the ICB elements would normally be replaced annually to maintain the lubricant in optimal condition.

Note: Graph lines have been smoothed to demonstrate long term performance and MPC values will fluctuate as varnish is drawn from the system back into solution and subsequently removed from the system by the SVR

VTK Varnish Test Kits

Colorimetric analysis per ASTM D02.C0.01 WK13070 is used to determine varnish potential in turbine lube oil. A mixture of the sample oil and petroleum ether is used to make the soluble by-products available for collection on a patch. The patch is analyzed with a spectrometer measuring Δ E reported as the MPC Δ E value. See page 236 for more details.

hyprofiltration.com/SVR

SVR Specifications

Dimensions ¹	Height 58" (147 cm) 98" (249 cm) with crane	Length ² 48" (122 cl	m)	Width ² 26" (66 cm)	Weight 700 lbs (318 kg)		
Connections	Inlet 1.5" FNPT with locking ball valve			Outlet 1" FNPT with locki	ng ball valve		
Max Reservoir Size	SVR1200 + SVR1200X 8,000 gal (30,000 liter) reservoir			SVR2400 Max 16,000 gal (60	SVR2400 Max 16,000 gal (60,000 liter) reservoir		
Element Configuration	Particulate filter SVR1200: HP107L18-VTM710V SVR2400: HP107L18-VTM710V SVR1200X: no particulate filter included		Main Filter SVR1200: ICB600524-V x 2 SVR2400: ICB600524-V x 4 SVR1200X: ICB600524-V x 2				
Seals	Fluorocarbon + silicone						
Operating Temperature	Fluid Temperature 86°F to 176°F (30°C to 80°C)			Ambient Temper -4°F to 104°F (-20C to 40C)	rature		
Materials of Construction	Housings Carbon steel with industrial co ASME U Code optional		Tray Carbon steel with	industrial coating	Fittings Swagelok [®] stainless		
Electric Motor	TEFC, 56-145 frame 1-1.5 hp, 1150-1750 RPM						
Motor Starter	MSP (motor starter/protector) in an IP65,	aluminum enclosi	ure with short circuit	and overload protection.		
Pump	Cast iron, positive displacement gear pump with internal relief. Maximum pressure on pump inlet 15 psi (1 bar). Consult factory for higher pressures.						
Pump Bypass	Full bypass at 90 psi (6.2 bar)						
Total System Flow ³	SVR1200 7-11 gpm		SVR2400 14-16 gpm				
ICB Canister Flow Rates ⁴	SVR1200 + SVR1200X 5 gpm (18.9 lpm) max		SVR2400 10 gpm (37.9 lpm)	max			
Pneumatic Option Air Consumption⁵	~40 cfm @ 80 psi						
Media Description	VTM $\beta 0.9_{C]} = 1000 \text{ particulate, insoluble oxidation} by-product and water removal media$		ICB lon charge bonding resin media for molecular removal of acids, varnish deposits, soluble oxidation by-products and dissolved metal ions from mineral based turbine oil				
Fluid Compatibility	Petroleum and mineral based fluids only (standard). For phosphate ester and other specified synthetic fluids, see FSA (page 108) or contact factory.						
Hazardous Environment Options	Select pneumatic powered ur Class 1, Division 1, Group C+E				e 501,		
² Spill retention pan standar	tions taken from base model and will vai d size. Contact factory for custom pan siz valve + flow meter (included standard).		options chosen.				

³Controlled via flow control valve + flow meter (included standard). ⁴Maximum system flow dependent on and will vary with motor selection.

⁵Air consumption values are estimated maximums and will vary with regulator setting.

hyprofiltration.com/SVR

c(VL)

SVR Part Number Builder

1	0	3	

SVR	Turbine Type Indicator Power Options Special Options
Model	Particulate FilterICBRecommended Reservoir Size1200 HP107L18-VTM710VICB600524-V × 2Max 8,000 gal (30,000 liter) reservoir2400 HP107L18-VTM710VICB600524-V × 4Max 16,000 gal (60,000 liter) reservoir1200X none (omit △P indicator and power options)ICB600524-V × 2Max 8,000 gal (30,000 liter) reservoir
Turbine Type	 CT Combustion turbine - mineral based oil ST Steam turbine - mineral based oil
∆P Indicator ¹	 D 22 psid visual gauge + electric switch E 22 psid visual gauge
Power Options Contact factory for options not listed	60 Hz, 1150-1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air 22 208-230 V ac, 1P 21 220 V ac, 1P 00 Pneumatically driven air 23 208-230 V ac, 3P 40 380-440 V ac, 3P flow meter included. 46 460-480 V ac, 3P 52 525 V ac, 3P flow meter included. 57 575 V ac, 3P 52 525 V ac, 3P flow meter included.
	Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use X_ Add X prefix to power option listed above. Not available with (00) Pneumatic Option.
Special Options	 A ir cooled heat exchanger (consult factory) C E marked for machinery safety directive 2006/42/EC D High filter ΔP auto shutdown I 00 mesh cast iron basket strainer F Filter element ΔP gauge with tattle tale follower needle H Automatic high temp shut down (160°F, 71°C) L High filter element ΔP indicator light (particulate filter only) M Total system flow meter (120 cSt max) N PM-1 ready (plumbing only) O On-board PM-1 particle monitor & clean oil indicator light All wetted components 304 or higher stainless steel² CUL and/or CSA marked starter enclosure for Canada U Code (ASME U code certified) + CRN L ifting eye kit W Automatic air bleed valve (includes one per vessel) V VFD variable speed motor frequency control O n site start-up training

¹Particulate filter only. ICB housing is equipped with 0-100 psi static pressure gauge. Industrial, liquid filled. ²With exception to cast iron gear pump.

hyprofiltration.com/SVR

FSTO Turbine Oil Varnish Removal Systems

FSTO is the complete oil conditioning solution for turbine and compressor lube oil. FSTO treats both soluble and insoluble forms of oxidation by-products to remove and prevent varnish deposits and deliver guaranteed results.

Utilizing ICB technology, FSTO removes the soluble varnish feedstock, acids and protects the anti-oxidant additive package while VTM high efficiency post filter removes insoluble by-products and will deliver unimaginably low ISO cleanliness codes so you can use your clean, in-service oil longer than ever before.

Sized just right.

Not every job calls for a Goliath sized solution. When it comes to small turbine lube oil and compressor reservoirs with contamination problems, the FSTO is sized just right. Sizing and flow rate options mean you get the perfect solution tailored specifically to your systems.

Reverse varnish formation.

Even before MPC values climb, trending acid number can be a leading indicator of trouble ahead. By removing oxidation by-products, FSTO restores the solubility of your oil which in turn chemically removes varnish deposits in your system. The continuous process goes even further by removing the acids from your system on a molecular level, meaning you're free and clear of varnish and its underlying causes.

Continuous varnish control.

Combined VTM and ICB technologies continuously remove soluble and insoluble oxidation by-products so that your turbines operate uninhibited by varnish. With the added benefits of increasing the lifespan of AO packages, implementing the FSTO to your filtration regime will make unit trips and unplanned downtime a thing of the past.

ISO Codes: right on target.

The same ultra-high efficiency particulate filter which removes insoluble oxidation by-products doubles up to deliver incredibly low ISO Codes and take the pressure off your on-board bearing lube, pump discharge, and servo filters, giving you an extension on the lifespans of both your oil and your critical components.

Extend your oil life.

FSTO prevents AO additive depletion, removes acids which negatively affect oxidative stability, and can even improve oil demulsibility to greatly extend the useful life of your oil. Every FSTO comes standard with sample ports in the right locations to arm you with access to consistently accurate and best practice samples.

A league of its own.

ICB is used on over 400 turbine and compressor packages achieving over 40 million hours of operating experience. No other product in the market can match track record or experience level. ROI in a Frame 7ea Gas Turbine has been calculated at \$170,000 per year on a \$8000 average annual investment on lubricant maintenance.

FSTO Specifications

Dimensions ¹	Height 72" (183 cm)	Length ² 47.5" (121 cm)	Width ² 31.5" (80 cm)	Weight 585 lbs (265 kg)		
Connections	Inlet 1" FNPT with ball valve		Outlet 1" FNPT with ball valve			
Max Reservoir Size	FSTO05 600 gal (2,271 liters)	FSTO1 1,200 gal (4,542 liters)	FSTO2 2,500 gal (9463 liters)	FSTO4 5,000 gal (18,927 liters)		
Element Configuration	Pre-filter HP107L18-VTM710V		ICB FST005: ICB600504-V FST01: ICB600504-V x 2 FST02: ICB600524 -V FST04: ICB600524-V x 2	FSTO05: ICB600504-V FSTO1: ICB600504-V × 2 FSTO2: ICB600524 -V		
Seals	Fluorocarbon + silicone					
Operating Temperature	Fluid Temperature 86°F to 176°F (30°C to 80°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)			
Materials of Construction	Housings Carbon steel with industri	al coating	Tray Carbon steel with industrial coating			
Electric Motor	TEFC, 56-145 frame 0.5 hp, 1450-1750 RPM					
Motor Starter	MSP (motor starter/protec	ctor) in an IP65, aluminum encl	osure with short circuit and ov	verload protection.		
Pump		ement gear pump with internal r). Consult factory for higher p				
Pump Bypass	Full bypass at 150 psi (10 l	bar)				
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³					
Media Description	VTM $\beta 0.9_{[C]} \ge 1000 \text{ particulate, i}$ by-product and water rem	insoluble oxidation loval media.	ICB Ion charge bonding resin media for molecular removal of acids, varnish deposits, soluble oxidation by-products and dissolved metal ions from mineral based turbine oil.			
Fluid Compatibility		ised fluids only (standard). For see FSA (page 108) or contact f				
Hazardous Environment Options		d unit (Power Option 00) or exp C+D. Call for IEC, Atex or other				

¹Dimensions are approximations taken from base moder and will vary according to option ²Spill retention pan standard size. Consult factory for custom pan sizing. ³Air consumption values are estimated maximums and will vary with regulator setting.

hyprofiltration.com/FSTO

FSTO Part Number Builder

FSTO				-	
	Flow Rate	Indicator	Power Options		Special Options

 Flow Rate1
 05
 0.5 gpm (1.7 lpm)

 1
 1 gpm (3.7 lpm)

 2
 2 gpm (7.5 lpm)

 4
 4 gpm (15.1 lpm)

 ΔP Indicator²

D

Е

22 psid visual gauge + electric switch 22 psid visual gauge

Power	60	Hz, 1750 RPM	50 I	Hz, 1450 RPM	Pne	eumatic
Options Contact factory for options not listed	22 23 46	120 V ac, 1P 208-230 V ac, 1P 208-230 V ac, 3P 460-480 V ac, 3P 575 V ac, 3P	21 40	110 V ac, 1P 220 V ac, 1P 380-440 V ac, 3P 525 V ac, 3P	00	Pneumatically driven air motor & PD pump. FRL & flow meter included.

Explosion proof - Class 1, Division 1, Group D per NEC 501 – Ready for outdoor use

X Add X prefix to power option listed above. Not available with (00) Pneumatic Option.

Special	A B	Air cooled heat exchanger (consult factory) Complete filter bypass line
Options	Č	CE marked for machinery safety directive 2006/42/EC
1	D	High filter ΔP auto shutdown
	Ē	100 mesh cast iron basket strainer
	F	Filter element ΔP gauge with tattle tale follower needle
	н	Automatic high temp shut down (160°F, 71°C)
	L	High filter element ΔP indicator light
	Μ	Total system flow meter (120 cSt max)
	N	PM-1 ready (plumbing only)
	0	On-board PM-1 particle monitor & clean oil indicator light
	S	All wetted components 304 or higher stainless steel3
	U	CUL and/or CSA marked starter enclosure for Canada
	V	Lifting eye kit
	W	Automatic air bleed valve
	Z	On site start-up training

¹Nominal flow rates at 60 Hz motor speeds.

²Particulate filter only. ICB housing is equipped with 0-100 psi static pressure gauge. Industrial, liquid filled.

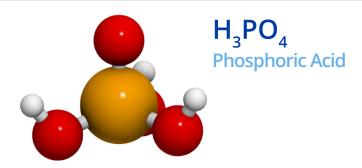
FSA Phosphate Ester Conditioning Systems

A complete solution for trouble-free EHC operation using phosphate ester fluids. Avoid premature fluid replacement, bleed and feed, and eliminate expensive flushes. FSAPE is the new standard for maintenance of water, acid, ISO Code, resistivity, and removal of gels and deposits that cause servo valve failure.

Ideal for steam turbine EHC fire resistant fluid maintenance.

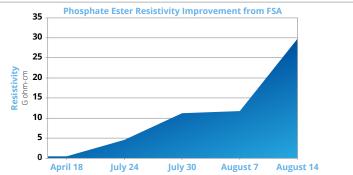
Resolve servo valve issues.

FSA skids featuring ICB[™] technology will maintain ideal fluid chemistry and cleanliness. Systems will reduce elevated Acid Number and water, increase resistivity and eliminate the cause of fluid gelling and servo valve sticking.


Minimize acid. Maximize efficiency.

High acid number (AN) in phosphate ester means premature fluid replacement if left unmanaged. Since acid production is autocatalytic, the acid in your system will generate more acid until your fluid becomes unusable. ICB technology can reduce AN to as low as 0.03 with 4-8x the capacity of other acid removal filters.

Clean, dry, healthy oil.


Water and phosphate ester together form strong acid which leads to premature fluid replacement. Integrated TMRN₂[™] Headspace Dehydrators continuously introduce nitrogen through the headspace to simultaneously remove water, O2, CO, H and other high temperature breakdown gases. Maintaining low water levels and eliminating reservoir contact with O2 will proactively manage the rate of fluid breakdown and minimize acid production.

Remove what others left behind.

Dissolved metal ions in phosphate ester form gels and deposits that accumulate on servo valve nozzles & flappers, resulting in slow servo valve response time, unit trips, and reduced fluid resistivity. ICB removes all dissolved metal, reverses gel and deposit formation, prevents unit trip and restores servo valve response time.

and-feed routines and unnecessary chemical flushes.

Extend your oil life, don't flush it.

one of the condemning factors of phosphate ester. In

Low resistivity in phosphate ester leads to electro-kinetic corrosion between dissimilar metal surfaces and is

addition to removing acids and dissolved metals, ICB has been shown to significantly increase fluid resistivity to

prevent premature fluid replacement, expensive bleed-

Comprehensive EHC protection.

In addition to FSA we offer these important companion products that eliminate common weak points in EHC fluid maintenance. Dynafuzz stainless steel filters to eliminate the common issues of high pressure filter fiber migration and static discharge, ECR to restore fluid color and to reduce patch weight, and VTM to upgrade existing low pressure filters.

FSA Specifications

Dimensions ¹	Height 58" (147 cm)	Length ² 47.5" (121 cm)	Width ² 31.5" (80 cm)	Weight 571 lbs (259 kg)			
Connections	Inlet 1" FNPT with locking ball	valve	Outlet 1" FNPT with locking ball valve				
Max Reservoir Size	FSA05 200 gal (750 liters)	FSA1 400 gal (1,500 liters)	FSA2 800 gal (3,000 liters)	FSA4 1,600 gal (6,050 liters)			
Element Configuration	Particulate filter HP107L18-VTM710V		ICB FSA05: ICB600504-A FSA1: ICB 600504-A x 2 FSA2: ICB600524-A FSA4: ICB600524-A x 2				
Seals	Fluorocarbon + silicone						
Operating Temperature	Fluid Temperature 86°F to 176°F (30°C to 80°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)				
Materials of Construction	Housings Carbon steel with indust	rial coating	Tray Carbon steel with indust	rial coating			
Electric Motor	TEFC, 56-145 frame 0.5 hp, 1450-1750 RPM						
Motor Starter	MSP (motor starter/prote	ector) in an IP65, aluminum enc	losure with short circuit and o	verload protection.			
Pump		cement gear pump with interna par). Consult factory for higher p					
Pump Bypass	Full bypass at 150 psi (10) bar)					
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³						
TMR-N ₂ Air Consumption	FSA05 < 1.2 SCFM	FSA1 < 1.2 SCFM	FSA2 < 2.0 SCFM	FSA4 < 3.6 SCFM			
Media Description	VTM $\beta 0.9_{[C]} \ge 1000 \text{ particulate}$ by-product and water rel		ICB Ion charge bonding resin removal of acids, gels ar by-products and dissolv phosphate ester and oth	nd deposits, oxidation ed metal ions from			
Fluid Compatibility	EHC Fire resistant hydrau	ulic fluids (phosphate ester). For	r polyol ester and other specifi	ed synthetics contact factory.			
Hazardous Environment Options		ed unit (Power Option 00) or ex o C+D. Call for IEC, Atex or other					
	tions taken from base model and	uill your according to options chosen					

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²Spill retention pan standard size. Consult factory for custom pan sizing. ³Air consumption values are estimated maximums and will vary with regulator setting.

hyprofiltration.com/FSA

FSA Part Number Builder

Fluid Type	Flow Rate Indicator Power Op	otions Special Options	
Fluid Type	PE Phosphate Ester (not compat	tible with Skydrol) ¹	
Flow Rate ²	05 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 2 gpm (7.5 lpm) 4 gpm (15.1 lpm)		
ΔP Indicator ³	 D 22 psid visual gauge + electric E 22 psid visual gauge 	c switch	
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 12 120 V ac, 1P 22 208-230 V ac, 1P 23 208-230 V ac, 3P 46 460-480 V ac, 3P 57 575 V ac, 3P	50 Hz, 1450 RPM 11 110 V ac, 1P 21 220 V ac, 1P 40 380-440 V ac, 3P 52 525 V ac, 3P	 Pneumatic Pneumatically driven air motor & PD pump. FRL & flow meter included.
		vision 1, Group C+D per NEC listed above. Not available with (00)	501 – Ready for outdoor use) Pneumatic Option.
Special Options	 A Air cooled heat exchanger (co C CE marked for machinery saft D High filter ΔP auto shutdown E 100 mesh cast iron basket str F Filter element ΔP gauge with H Automatic high temp shut do L High filter element ΔP indicat M Total system flow meter (120) N PM-1 ready (plumbing only) O On-board PM-1 particle moni S All wetted components 304 or T3 Remove TMRN, reservoir head U CUL and/or CSA marked start V Lifting eye kit W Automatic air bleed valve Z On site start-up training 	fety directive 2006/42/EC rainer tattle tale follower needle own (160°F, 71°C) tor light 0 cSt max) itor & clean oil indicator light or higher stainless steel ⁴ adspace dehydrator	

¹Consult factory for additional fluid type information.

³Nominal flow rate at 60 Hz motor speeds. ³Particulate filter only. ICB housing is equipped with 0-100 psi static pressure gauge. Industrial, liquid filled. ⁴With exception to cast iron gear pump.

HY-PRO

FSJL Aeroderivative Jet Lube Oil Conditioning Systems

FSJL fluid conditioning skids are a total solution for managing aeroderivative jet lube oils susceptible to high thermal oxidative stress and coke deposit formation. FSJL prevents and reduces coke deposits that lead to variable geometry failures. Extend useful fluid life by removing the catalysts for oxidation; O₂ contact, acid, oxidative coking precursors, dissolved metals, combustible gases, water, and varnish all while maintaining low ISO Codes. Specifically designed for MIL-L-23699 aeroderivative jet lube oils, the FSJL eliminates the contamination that leads to variable geometry failures.

Ideal for maintenance of aeroderivative jet lube oil and hydraulic systems.

Prevent coking deposits.

Mechanical wear, oil flow restrictions, and increased operating temperature are all caused by coking deposits, the major cause of premature failure in aeroderivative oils. ICB (Ion Charge Bonding) technology removes the oxidation by-products before they can cause additive depletion and coking deposits that form on the turbine rotor, bearings and other wetted surfaces.

Remove acids & dissolved metals.

Aeroderivative turbines often operate at elevated Acid Number (AN) values which attack metal surfaces, adding dissolved metals into the lubricant. ICB technology removes acids and metals, keeping rates of breakdown at a minimum while eliminating the feedstock that leads to coke formation.

High efficiency filtration.

The FSJL high efficiency final filter removes particles and insoluble by-products, delivering unimaginably low ISO Codes to extend the life of your mechanical components and bearings. To top it off, every HP107 filter element comes with an integral bypass valve to give you the safety and security you want with the filtration power you need.

Actively manage oxidation.

Normal lubricant reservoirs are vented to atmosphere, the key ingression pathway for water and oxygen which are two major causes of jet lube breakdown. The integrated TMR-N₂ headspace dehydrator on every FSJL actively blankets the reservoir with dry nitrogen to remove water, oxygen and combustible gases and greatly reduce the rate of oxidation and extend your fluid's useful life.

Full-time (water) extraction.

For applications that require full-time operation of reservoir headspace extraction fans, special option V1 integrates the V1 Compact Vacuum Dehydrator in place of the TMR-N₂ to provide a powerhouse water removal option that complements ICB and high efficiency on-board particulate filtration.

FSJL Specifications

Dimensions ¹	Height 58" (147 cm)	Length ² 47.5" (121 cm)	Width ² 31.5" (80 cm)	Weight 571 lbs (259 kg)
Connections	Inlet 1" FNPT with ball valve		Outlet 1" FNPT with ball valve	
Max Reservoir Size	FSJL05 150 gal (560 liters)	FSJL1 300 gal (1,125 liters)	FSJL2 800 gal (3,000 liters)	FSJL4 1,600 gal (6,000 liters)
Element Configuration	Particulate filter HP107L18-VTM710V		ICB FSJL05: ICB600504-J FSJL1: ICB 600504-J x 2 FSJL2: ICB600524-J FSJL4: ICB600524-J x 2	
Seals	Fluorocarbon + silicone			
Operating Temperature	Fluid Temperature 86°F to 176°F (30°C to 80°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)	
Materials of Construction	Housings Carbon steel with industria	I coating	Tray Carbon steel with industr	ial coating
Electric Motor	TEFC, 56-145 frame 0.5 hp, 1450-1750 RPM			
Motor Starter	MSP (motor starter/protect	tor) in an IP65, aluminum enc	losure with short circuit and ov	erload protection.
Pump		ment gear pump with interna). Consult factory for higher p		
Pump Bypass	Full bypass at 150 psi (10 b	ar)		
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ²			
TMR-N ₂ Option Air Consumption	FSJL05 < 1.2 SCFM	FSJL1 < 1.2 SCFM	FSJL2 < 2.0 SCFM	FSJL4 < 3.6 SCFM
Media Description	VTM $\beta 0.9_{[c]} \ge 1000 particulate, in by-product and water remo$	nsoluble oxidation oval media.	ICB Ion charge bonding resin removal of acids, gels and by-products and dissolve polyol ester and other sy	d deposits, oxidation d metal ions from
Fluid Compatibility	Type II, MIL-L-23699, polyo	l ester base stock, synthetic tu	urbo oils and polyol esters.	
Hazardous Environment Options		unit (Power Option 00) or exp F+D. Call for IEC, Atex or other	plosion proof NEC Article 501, requirements.	
	ations taken from base model and wil e estimated maximums and will vary v			

FSJL Part Number Builder

Fluid Type	Flow Rate Indicator Power Options Special Options
Fluid Type	JL Aeroderivative jet lubricants
Flow Rate ¹	05 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 2 gpm (7.5 lpm) 4 gpm (15.1 lpm)
ΔP Indicator ²	 D 22 psid visual gauge + electric switch E 22 psid visual gauge
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & flow meter included. 22 208-230 V ac, 3P 40 380-440 V ac, 3P 52 525 V ac, 3P 32 208-230 V ac, 3P 52 525 V ac, 3P flow meter included. 46 460-480 V ac, 3P 52 525 V ac, 3P flow meter included. 57 575 V ac, 3P 52 525 V ac, 3P flow meter included. Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use X_ Add X prefix to power option listed above. Not available with (00) Pneumatic Option.
Special Options	 A Air cooled heat exchanger (consult factory) B Complete filter bypass line C E marked for machinery safety directive 2006/42/EC D High filter ΔP auto shutdown E 100 mesh cast iron basket strainer F Filter element ΔP gauge with tattle tale follower needle H Automatic high temp shut down (160°F, 71°C) L High filter element ΔP indicator light M Total system flow meter (120 cSt max) N PM-1 ready (plumbing only) O On-board PM-1 particle monitor & clean oil indicator light S All wetted components 304 or higher stainless steel³ T2 Add TMRN₂ reservoir headspace dehydrator U CUL and/or CSA marked starter enclosure for Canada V Lifting eye kit Y1 Add V1 Compact Vacuum Dehydrator W Automatic air bleed valve Z On site start-up training

¹Nominal flow rates at 60 Hz motor speeds.

²Particulate filter only. ICB housing is equipped with 0-100 psi static pressure gauge. Industrial, liquid filled. ³With exception to cast iron gear pump.

ECR[™] Electrostatic Contamination Removal

Ideal for sub-micron insoluble contamination removal in phosphate ester fluids in turbine EHC systems.

Remove fine particulates that are below the range of mechanical filters. Standard Electrostatic Oil Cleaner (EOC) systems are ineffective for phosphate ester fluid applications due to fluid conductivity restrictions. The ECR[™] is designed specifically to solve this dilemma.

Unique restoration solution.

Pressure induced dieseling and element spark discharge generate sub-micron insoluble carbon based particles that cannot be removed by traditional particulate filtration. The ECR[™] combines a high voltage electrostatic field with a proprietary collector element design to remove the sub-micron particles that are the cause of dark EHC fluid and high varnish potential values (MPC).

Extend your oil life.

ECR[™] improves fluid color and drastically reduces solid contamination levels. When used in conjunction with ICB[™] for acid and dissolved contamination removal and TMR[™]-N2 for water removal, comprehensive fluid maintenance is achieved which, when maintained over time, eliminates the need for chemical flushes.

Comprehensive testing & support.

With typical analysis showing as little as 10% of the contamination present, specialized testing is included to document starting contamination levels and demonstrate results.

ECR[™] Specifications

Model	ECR4000	ECR8000
Height	57" (145 cm)	57" (145 cm)
Width	42" (107 cm)	56" (142 cm)
Depth	27" (69 cm)	27" (69 cm)
Weight	426 lbs (193 kg)	567 lbs (257 kg)
Connections	1" MNPT	1" MNPT
Max Flow Rate	4.5 gpm (17 lpm)	9 gpm (34 lpm)
Element Quantity	1 collector element	2 collector element
Seals	Fluorocarbon	Fluorocarbon
Control Panel	Weather resistant NEMA 4 enclosure	Weather resistant NEMA 4 enclosure
High Voltage Capacity	12,000 V	12,000 V
Electric Motor	TEFC, 56-145 frame ¾ hp, 1450-1750 RPM	TEFC, 56-145 frame ¾ hp, 1450-1750 RPM
Dirt Capacity	15 lbs (6.8 kg) per element	15 lbs (6.8 kg) per element
Element Lifespan	Approximately 4,000 service hours	Approximately 4,000 service hours
Max Suction Line Pressure Loss	6 psi (0.41 bar), 12.2 Hg vacuum	6 psi (0.41 bar), 12.2 Hg vacuum
Max Water Level	<500 ppm for maximum efficiency	<500 ppm for maximum efficiency
Fluid Compatibility	Phosphate ester based fire resistant fluids.	Phosphate ester based fire resistant fluids.

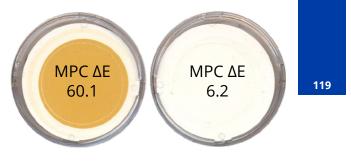
ECR[®] Part Number Builder

ECR	Element Type Power Option	
Model	4000 1 collector element8000 2 collector elements	
Element Type	Fluid Resistivity Valueomit> 8G-OHMS/cm-LR< 8G-OHMS/cm	Collector Element COL-600990 COL-600907
Power Options	60 Hz, 1750 RPM 12 120 V ac, 1P 22 208-230 V ac, 1P 23 208-230 V ac, 3P 46 460-480 V ac, 3P 57 575 V ac, 3P	50 Hz, 1450 RPM 11 110 V ac, 1P 21 220 V ac, 1P 40 380-440 V ac, 3P 52 525 V ac, 3P

hyprofiltration.com/ECR

ICB[™] Ion Charge Bonding Acid and Varnish Removal Filters

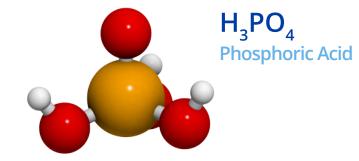
While offering best in class acid and varnish removal, ICB[™] filter elements significantly reduce production losses and resolve servo-valve issues by eliminating the contamination responsible for sticking or sluggish valves. Conventional acid filters cannot remove this contamination and are also significant contributors of harmful metals and fine particulate. ICB^m filters eliminate these key issues and direct maintenance to where it matters most.



hyprofiltration.com/ICB

Stop varnish related fail-to-starts and unit trips.

ICB[™] attacks the source of the problem on a molecular level, removing the oxidation by-products that form varnish deposits. By reversing the chemical process of varnish deposit formation, ICB[™] restores oil health to remove varnish throughout the system and in critical components so your servo valves operate more efficiently than ever.



Remove what others left behind.

As dissolved metals accumulate, they act as a catalyst forming depots on servo valves and gels that can cause valve restriction and mask filter elements. ICB[™] elements do not contribute metals and will remove dissolved metals from airborne ingress and element leaching to <10 ppm.

Minimize acid. Maximize efficiency.

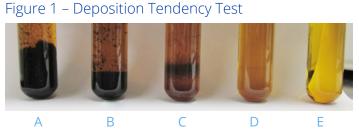
High acid number (AN) in phosphate ester means premature fluid replacement if left un-managed. Since acid production is autocatalytic, the acid in your system will generate more acid which, left unchecked, can quickly become a serious problem. ICB^m technology removes acid to our target of AN < 0.05 with 4-8 times the capacity of alternate acid removal medias.

Extend your oil life, don't flush it.

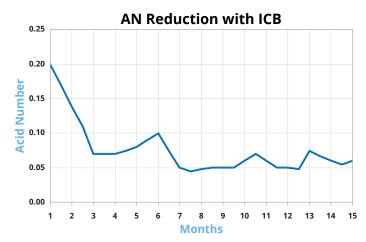
For most EHC systems, the primary operating fluid is phosphate ester. This is a very safe fluid with excellent lubricating properties that when properly maintained can provide years of trouble-free operation without the need for a flush during replacement. Unfortunately, many power plants have insufficient or incorrect maintenance which causes wide ranging issues that result in actual or high risk of production loss, and expensive flushes after the fact.

Unlike all others.

ICB[™] is unlike all other ion exchange resin products. Our 20 years of operating experience and continued research has led to best in class resistivity improving capability with increases >10X having been observed. We use custom engineered resins that have been optimized for the lubricant environment.

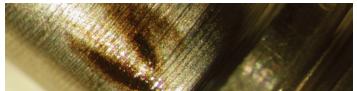


ICB[™] filters are drop in replacements for many OEM sizes and come in a variety of chemistries for specialized lubricant and fluid applications. When used in conjunction with Hy-Pro Dualglass media filter elements, ISO particle codes will be decreased significantly with document results.



Acid Scavenging Technology Comparison

Selexsorb	Fuller's Earth	ICB [™] Ion Charge Bonding
Produces by-products that react with fluid to cause soft gel deposits	Produces hard salts and soap deposits that coat sensitive servo valves	Removes the dissolved break-down products that are responsible for servo valve failures (See Figures 1 and 2)
Can only control acids up to 0.25 mg KOH/g, leading to diminished fluid resistivity	Can only control acids up to 0.25 mg KOH/g, leading to diminished fluid resistivity	Dramatically increases fluid resistivity values which eliminates a common servo-valve failure mode referred to as electro-kinetic-wear or valve erosion
Removes acid but re-contaminates your fluid with sodium, aluminum, silicon	Removes acid but re-contaminates your fluid with magnesium, iron, calcium	Does not contribute fine particulate, or add dissolved metals that normally contribute to increased rates of oxidation
3x less capacity to remove acid than ICB	6-7x less capacity to remove acid than ICB	Highest ratio of resin volume to flow rate for higher single pass removal rate and much lower cost of ownership
Made from purified activated Alumina as a Y-Zeolite	Made from magnesium oxide and hydroxide, processed from attapulgus clay or attpulgite	Complete stainless steel construction, featuring robotic, spiral welding which provides maximum filter integrity, adding a new fail- safe in the EHC fluid conditioning system


In Step 1 of the Deposition Tendency Test referred to in the EPRI EHC Fluid Maintenance Guide 2002, Page 4-39, EHC fluid is mixed with Hexane which forces out dissolved contamination into solid form. In the first three test tubes (A,B,C), EHC fluid using conventional treatment form visible solids. Servo-valve performance and reliability would be significantly impaired using EHC fluid in this condition. In the last 2 test tubes (D,E) where the EHC fluid was cleaned with ICBTM, no deposition or solids of any form are observed. Servovalve response time and reliability would be maximized operating EHC fluid in this condition.

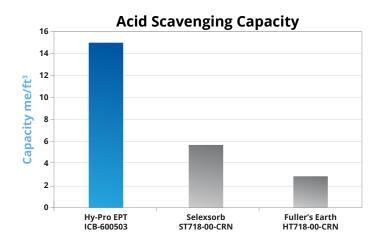

HY-PRO

Figure 2 – Servo Valve Spool with Contamination Deposit

Servo Valve Spool showing signs of fluid contamination deposition. The contamination responsible for these deposits is not routinely measured and in this example the servo-valve would be at abnormal risk level for failure. The Deposition Tendency test as shown in Figure 1, easily identifies if this contamination is present.

hyprofiltration.com/ICB

ICB[™] Specifications

Dimensions	Model	Length	Outer Diameter	Inner Diameter	Dry Weight
	ICB-600502	11.030 in (28.016 cm)	4.869 in (12.367 cm)	1.866 in (4.740 cm)	8.5 lbs (3.9 kg)
	ICB-600503	18.000 in (45.720 cm)	6.211 in (15.776 cm)	2.250 in (5.715 cm)	13.0 lbs (5.9 kg)
	ICB-600504	18.000 in (45.720 cm)	6.211 in (15.776 cm)	2.600 in (6.604 cm)	13.0 lbs (5.9 kg)
	ICB-600508	32.072 in (81.463 cm)	6.202 in (15.753 cm)	1.555 in (3.950 cm)	23.0 lbs (10.4 kg)
	ICB-600509	17.875 in (45.403 cm)	11.045 in (28.054 cm)	2.375 in (6.033 cm)	35.0 lbs (15.9 kg)
	ICB-600510	19.010 in (48.285 cm)	11.045 in (28.054 cm)	2.375 in (6.033 cm)	37.0 lbs (16.8 kg)
	ICB-600511	19.473 in (49.461 cm)	11.020 in (27.991 cm)	2.375 in (6.033 cm)	38.0 lbs (17.2 kg)
	ICB-600514	20.157 in (51.199 cm)	11.045 in (28.054 cm)	2.375 in (6.033 cm)	40.0 lbs (18.1 kg)
	ICB-600524	20.157 in (51.199 cm)	11.045 in (28.054 cm)	2.375 in (6.033 cm)	40.0 lbs (18.1 kg)
	ICB-601349	24.563 in (62.390 cm)	10.281 in (26.114 cm)	8.919 in (22.654 cm)	35.0 lbs (15.9 kg)
	ICB-601946	9.119 in (23.162 cm)	6.211 in (15.776 cm)	2.600 in (6.604 cm)	6.0 lbs (2.7 kg)
Operating Temperature	86°F to 176°F (30°C to 80°C)				
Operating Pressure	Maximum operating ΔP	is <90 psid (<6.2 bard) v	vith normal ∆P <25 psid (<	1.8 bard)	
Materials of Construction	Shell Stainless steel	Endcaps Stainless steel	Handle Stainless steel	Seals Silicone ¹	
Media Description ²	A A filter for phosphate ester, fire-resistant lubricants, sold under the brand names: Fyrquel®, Fyrquel® EHC, Fyrquel® EHC Plus, Fyrquel® GT, Reolube® TurboFluid 46XC, Reolube® TurboFluid B, Anvol® 46 XC, Shell Turbo® Fluid DR 46, Mobil Pyrotec® HFD 46, and many others	C C filter for polyol ester fluids including QuintoLubric®	J J filter for polyol ester lubricants used in aero derivative jet engines including Mobil Jet [®] II	T T filter for mineral oil based hydraulic fluids	V V filter for mineral oil based turbine and compressor lubricants
Applications	A Acid + Varnish Scavenging (Acid Numbers <0.5 mg KOH/g)	C Aggressive Acid + Varnish Scavenging (Acid Numbers >0.5 mg KOH/g)	J Acid + Varnish Scavenging	T Varnish Removal	V Aggressive Varnish + Moderate Acid Scavenging
Filter Sizing Guidelines	maintenance. Mineral C per day for normal lubr	il based turbine and cor icant maintenance. For f	quire 3-4x reservoir exch npressor lubricants requi luid or lubricant restorati lelines, selection and sizir	re 1x reservoir exchange on higher flow rates may	<u>j</u>

¹ICB-600508 utilizes Fluorocarbon gasket standard. ² Fyrquel is a registered trademark of ICL, Reolube is a registered trademark of Chemtura, Anvol is a registered trademark of Castrol. Shell Turbo is a trademark of Shell Oil Company. Mobil Pyrotec and Mobil Jet are trademarks of Exxon Mobil Corporation. Quintolubric is a registered trademark of Quaker Chemicals.

¹²² Water Contamination Types, Removal & Prevention

Water is one of the most common and most damaging contaminants found in lube or hydraulic systems. Continuous or periodic high water levels result in damage such as: metal etching (corrosion), abrasive wear in hydraulic components, dielectric strength loss, fluid breakdown, additive precipitation and oil oxidation, reduction in lubricating properties, and many others.

The effects of moisture in your oil systems can drastically reduce on-stream plant availability. Bearing life and critical component life can also be greatly reduced by moisture levels above and within the saturation point. What makes matters worse, the degree of contamination and type of water contamination play a pivotal role in determining the best method for removal. The three types are listed below.

Free and dissolved water in hydraulic and lube systems leads to bearing fatigue, accelerated abrasive wear, corrosion of metal surfaces, increased electrical conductivity, viscosity variance, loss of lubricity, and fluid additive breakdown. Sources include condensation, reservoir leakage, worn actuator seals, heat exchanger leakage, new oil and more.

Dissolved Water	Dissolved water is the state at which individual water molecules (not visible to the naked eye) are dispersed throughout a fluid. Dissolved water accrues below the fluid's saturation point. Fluid with only dissolved water in it will have a bright, clear appearance.
Emulsified Water	Once the dissolved water's concentration has exceeded the saturation point of the fluid, microscopic water droplets will start to form an emulsion which is suspended within the fluid. Fluid samples containing emulsified water will have a cloudy, hazy appearance.
Free Water	Free water is formed once the emulsified water has reached a concentration at which it starts a separation phase and large water droplets begin to fall out of solution. Fluid samples containing free water will have a cloudy, hazy appearance. As the sample settles, the free water will fall out to form a separated layer on the bottom of the sample.

Water Contamination Solutions

VUD Vac-U-Dry Vacuum Dehydrators

124 Vacuum dehydration removes free, emulsified and dissolved water while maintaining low operating ISO Codes with high efficiency particulate filtration. With flow rates up to 100 gpm (379 lpm) and 24x7 unattended operation capabilities, the VUD is ideal for all hydraulic and lube oil fluids up to ISO VG 680.

V1 Compact VUD Vacuum Dehydrators

132 Optimized for tight spaces with a salt water edition for marine applications, V1 removes free, emulsified and dissolved water while maintaining low operating ISO Codes with high efficiency particulate filtration. Ideal for all hydraulic and lube oils up to ISO VG 680.

COT Turbine Oil Conditioning Systems

136 A total conditioner for turbine and compressor lube oils, COT rapidly removes gross free and emulsified water by coalesce liquid-liquid separation technology. Ideal for managing steam turbine water ingression during start-up or continuous cooler/steam leaks. COT maintains low operating ISO Codes with high efficiency particulate filtration. Suitable only for R&O lube oils up to ISO VG 68.

FCLCOT Turbine Oil Conditioning Filter Carts

142 A compact, portable solution for boiler feed pump and compressor lube oils, FCLCOT rapidly removes gross free and emulsified water by coalesce liquid-liquid separation technology. Suitable only for R&O lube oils up to ISO VG 68. Maintains low operating ISO Codes with high efficiency particulate filtration.

TMR-N₂

146 A dedicated active headspace dehydrator and nitrogen generator for hydraulic reservoir and gearbox applications. TMR-N₂ maintains water between 200-500 ppm, prevents airborne water, particulate and metal ion ingression, and removes dissolved combustible gases.

TMR-Air Active Headspace Dehydrators

148 A dedicated active headspace dehydrator for hydraulic reservoir and gearbox applications. TMR-Air maintains water between 200-500 ppm, and prevents airborne water, particulate and metal ion ingression.

VUD Vac-U-Dry Vacuum Dehydrators

The optimized balance between heat, vacuum, process design and an easy, user friendly operating system for removal of water and particulate from hydraulic and high viscosity lubricating oils. Equipped with generously sized, high efficiency filtration, the VUD is the ultimate oil purifier.

Keeping fluids clean and dry extends component and bearing life, increases productivity, minimizes downtime and extends useful fluid life. The VUD is ideal for removal of all forms of water, including free, emulsified and dissolved water and gas from hydraulic and lubricating oils.

hyprofiltration.com/VUD

Contamination is complicated. Removing it is easy.

With features including viscosity specific dispersal element designs, fin tube low watt density heaters, oversized particulate filter, adjustable recirculation line, auto phase detection and reversal, programmable thermostat, proprietary vacuum chamber level control, foam sensor and auto-drain, VUD is the ultimate contamination removal system.

Never stops working.

VUD is a workhorse designed for 24/7 unattended operation. With a dual condensate collection tank design, auto water level sensors and automatic drain valves, there is no need to stop to drain water. The oversized condenser and dual condensate collection tanks work together to keep the water out of the vacuum pump.

Results you can see.

Clear covers on the vacuum chamber and condensate collection tanks let you see what is really happening inside the VUD. You will know when you start removing water or when you are almost below saturation point with just a glance.

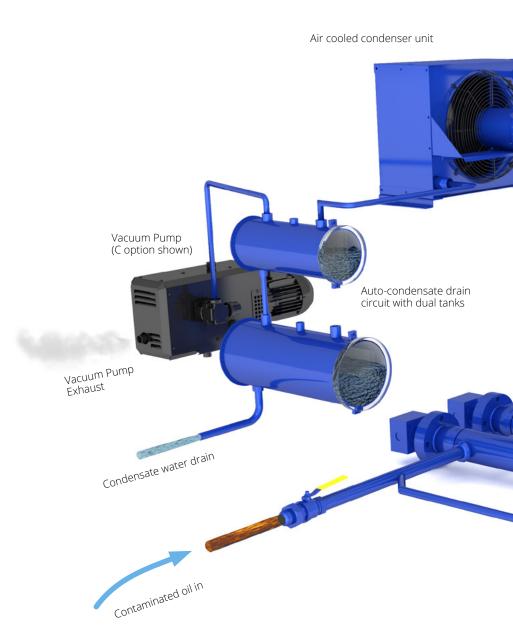
Integrated intelligence.

The VUD smart relay enabled control panel makes start-up and shut-down safe and operator friendly so that everything is controlled with the simple push of a button. To take it even further, the optional PLC Touch Screen provides operating controls and data right at your fingertips.

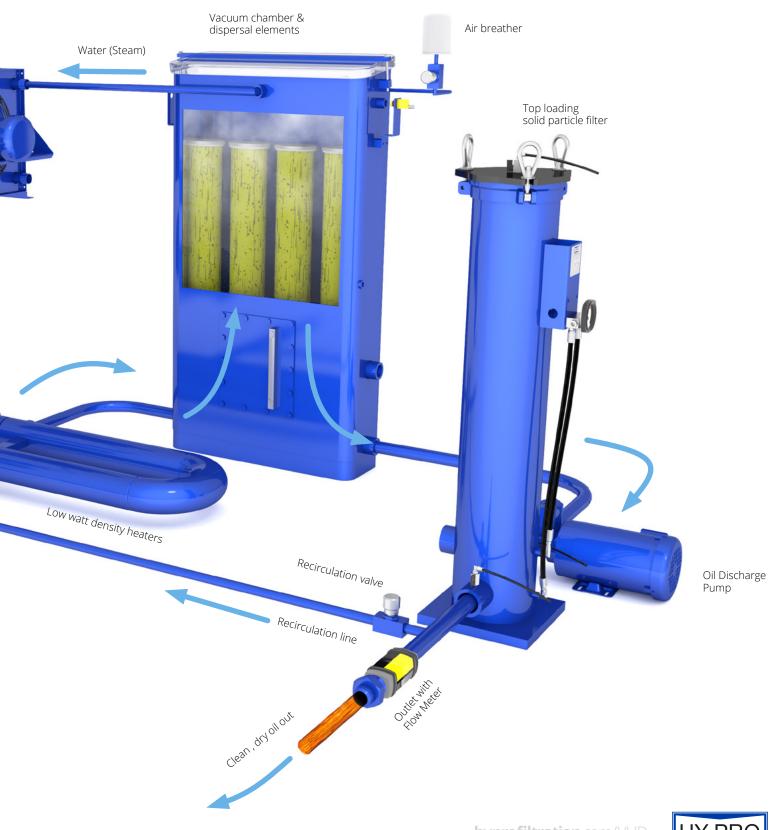
Filtration starts with the filter(s).

Particulate media options down to $\beta 2.5_{[C]} \ge 1000$ and viscosity specific dispersal elements provide you with the best filtration and water removal capabilities in the world, period.

Completely, entirely, totally, all inclusive.

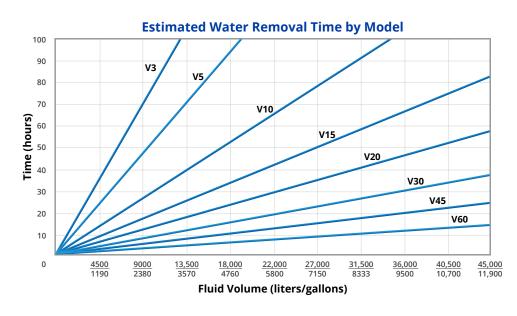

When it comes to comprehensive filtration and water removal, the buck stops here. VUD customization takes on many forms such as unique size requirements, combining VUD with other technologies such as FRF acid or turbine lube oil varnish removal, ATEX electrical standards, all to deliver the perfect oil purification system to meet your exact needs.

¹²⁶ The Unmatched Purification Process


How it works

Contaminated oil is drawn into the Vac-U-Dry purifier by a high output vacuum pump. The oil passes through the low watt density heater where heated to optimum temperature for the dehydration process (150°F, 66°C). The oil enters the vacuum chamber passing through specially designed dispersal elements which create a thin film of oil that is exposed to the vacuum. The water is vaporized and then drawn into the condenser where it liquefies and drains into the condensate tank.

The dehydrated oil flows to the bottom of the vacuum chamber and is removed by the discharge pump where it is pumped through the high efficiency particulate filter assembly $(\beta x_{cl} > 1000)$ and returned to the system. The recirculating line helps the Vac-U-Dry reach optimum temperature in cold start situations and can be used to throttle machine inlet and outlet flow. From here, your oil can either be recirculated for additional temperature and contamination control or returned to your reservoir or equipment where it will operate more efficiently than ever.


HY-PRO

hyprofiltration.com/VUD

HY-PRO

The Proven Performer

No other technology removes water faster or more safely with less chance of foaming than the Hy-Pro VUD. The graph here represents the estimated time required per model to remove water from 5000 ppm (0.5%) down to 150 ppm (0.015%) for increasing reservoir sizes.

Vacuum Pump Options

VUDs come standard with several vacuum pump options to best suit your application needs. Options C and D offer maximum portability to use your VUD in almost any location. Whether you're using your VUD to service multiple systems or for service work, you'll have unmatched filtration everywhere you need it.

C – Dry Seal (Dry Rotary Claw)

Long maintenance interval (10,000 hour synchronizing gear oil change) and great for portability. With excellent corrosion resistance to condensate exposure, this offers our lowest cost of ownership vacuum pump option.

D – Dry Seal (Lubricated Rotary Vane)

500-750 hour maintenance interval (lubricating oil and filter change), excellent for portability, compact size and low weight. The D option vacuum pump offers our lowest initial cost of ownership.

L – Liquid Ring

Ideal for dedicated VUD applications where ambient conditions are hot and humid and portability is not required. Minimum 3 gpm (11 lpm) external process water is required. Maintenance includes maintaining clean process water and balancing compound pressure gauge.

Vacuum power that doesn't suck.

Pulled by the vacuum pump, oil passes through the heater housing and vacuum chamber dispersal elements, providing smooth flow for optimum water removal without foam. The tall vertical vacuum chamber achieves maximum oil film surface area on the dispersal elements, aided by proprietary variable flow level control, to remove water from your oil incredibly fast with unmatched consistency.

Dispersal elements.

Inside every VUD's vacuum chamber is the secret to its high efficiency water removal success. Viscosity range specific dispersal elements configured properly means faster water removal without the foaming issues that come with a one size fits all dispersal media for hydraulic and lube oils.

Take control of your system, automatically.

The Inlet Control Valve (N/C Solenoid) automatically closes when the VUD is not in operation, preventing the unit from siphoning fluid from a reservoir or flooding from a positive head inlet situation.

Synced to your system.

Achieve optimum VUD process temperature faster and ease start-up on high viscosity oils, especially when they're cold. Also ideal for adjusting overall VUD return flow down when using VUD on a small reservoir or gearbox. Simple and effective, the recirculation line adds incredible flexibility to fine tune the VUD to your system.

You can't beat the heat.

With no direct contact with the heating element, your turbine oil will safely and quickly get up to temperature without the risk of burning. The programmable temperature control with integral no-flow switch prevents oil damage and allows you to heat your fluids at your own pace. And what's more: all this comes standard on every VUD.

VUD Specifications

Model	V3D	V5C	V10C	V15C	V20C	V30C	V45C	V60C	V100C
Height ¹	60" (152 cm)	75" (191 cm)	75" (191 cm)	75" (191 cm)	75" (191 cm)	89" (226 cm)	75" (191 cm)	89" (226 cm)	89" (226 cm)
Length ¹	48" (122 cm)	56" (142 cm)	56" (142 cm)	56" (142 cm)	72" (183 cm)	84" (213 cm)	84" (213 cm)	96" (244 cm)	120" (305 cm)
Width ¹	32" (82 cm)	32" (82 cm)	32" (82 cm)	32" (82 cm)	36" (91 cm)	40" (102 cm)	48" (122 cm)	60" (153 cm)	96" (244 cm)
Weight ¹	850 lbs (386 kg)	2000 lbs (908 kg)	2400 lbs (1089 kg)	2500 lbs (1134 kg)	2800 lbs (1270 kg)	3100 lbs (1406 kg)	3400 lbs (1542 kg)	3700 lbs (1678 kg)	4600 lbs (2087 kg
Dispersal Element Quantity	2 x 11" (28 cm)	2 x 22" (56 cm)	3 x 22" (56 cm)	3 x 22" (56 cm)	4 x 22" (56 cm)	4 x 36" (91 cm)	8 x 22" (56 cm)	8 x 36" (91 cm)	16 x 36" (91 cm)
Operating Temperature	Fluid Tem 30°F to 180 (0°C to 82°)°F			-4°F	bient Temper to 104°F C to 40C)	ature		
Materials of Construction	Frame Painted ste	eel & 304 stain		ssembly steel		densate tank nless steel		Element bypa Nylon	ss valve
Media Description	of DFE rate media for a	es, our latest ; ed, high perfor all hydraulic & ≥ 1000 (βx ≥ 2	mance glass lubrication	A G8 Dualglass high performance media combined with water ren scrim. $βx_{[C]} ≥ 1000$ (βx ≥ 200)				teel wire mesh ≥ 2 (βx ≥ 2)	1

¹Dimensions are approximations taken from base model and will vary according to options chosen.

VUD Part Number Builder |

VUD										_	_	
Flow Rate	\ \	/acuum Pump	Power Options	Dispersal Element	Media	Seals		Heaters	Condenser	Special Opti	ons	Multi Function Unit
Flow Rate ¹	3 5 10 15 20	3 gpm (1 5 gpm (1 10 gpm (1 15 gpm (20 gpm (8.9 lpm) 37.9 lpm) 56.8 lpm)				60	30 gpm (114 45 gpm (170 60 gpm (225 100 gpm (32	0 lpm) 5 lpm)			
Vacuum Pump Type	C D L	Dry seal ((rotary claw) (lubricated ro ng (external w		required)							
Power Options	60 23 46 57	Hz 208-230 \ 460-480 \ 575 V ac,	V ac, 3P					Hz 380 V ac, 3P 415 V ac, 3P 525 V ac, 3P)			
Dispersal Element	D P W	Metallic p	backed disper	sal element	thetic media (- not for use ement (ISO V(in phosph	ate e		s (viscosity ≥	e ISO VG 460)		
Media Selection	1M 3M 6M 10M 16M	$β5_{[C]} \ge 10$ $β7_{[C]} \ge 10$ $β7_{[C]} \ge 1$ $β12_{[C]} \ge 1$ $β17_{[C]} \ge 1$	1000, β1 ≥ 200 00, β3 ≥ 200 00, β6 ≥ 200 000, β12 ≥ 20 000, β17 ≥ 20 000, β25 ≥ 20	0			25W 40W 74W	nless wire ι 25μ nomir 40μ nomir 74μ nomir 149μ nomi	nal nal nal			
Seals	V E ²	Fluoroca EPR seals	rbon 5 (for Skydrol	use)								
Heaters	9 12 24 36	9 kW 12 kW 24 kW (2 36 kW (3	,				48 64 80 96	48 kW (4 x 1 64 kW (4 x 1 80 kW (5 x 1 96 kW (6 x 1	6 kW) 6 kW)			
Condenser	A B L	Air coole Air & liqu Liquid co	id cooled									
Special Options	8 B C D F G H J K L M O	Auto con Pre-filter CE marke Dirty filte Carbon v Vacuum 316 stain Manual re Individua Sight flow Lifting eye Discharg	l heater selecto / indicator (wh	n Ising Ising Ising crating arm light exhaust filt ning sensor e wet parts (3 er (in addition for switches eel type) Ister	er	eset)		Electrical ph Inlet line ba Skydrol fluid Hose kit (su 50' (15 m) e Inlet contro Water sense Explosion p VFD variable	e spares & ester fluid c nase reversa sket straine d compatibi ction & retu lectrical com l valve (for p or and indic roof - Class e speed mo	repair kit ompatibility m al switch rr lity modificatio Irn hoses + wa d without plug positive head i	on inds) nlet) o C+E cont) rol
Multi Functior Units	COT ICBI	• C(PE° Pł	nosphate este	essel adder er acid & diss	+ auto water solved metal i ion side loop (removal (c	conta	ict factory for	r alternate f)0 lite	er reservoir)

¹Nominal flow rates at 60 Hz motor speeds.

²Contact factory for other fluid option compatibility.

³Standard supplied options, must be included in part number. ⁴Recommended option.

*Repair & spares kit includes common consumable and select critical spares such as flow switches, fuses, and tank lids.
 *When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.
 *When selected, must be paired with Seal option "E." Contact factory for more information or assistance in fluid compatibility.
 *Consult factory for other explosion proof options.

Narnish and IĆB add-on technologies condition a portion of maximum VUD flow. Standard SVR1200CT flow rate ≤ 5 gpm. ICB add-on will be sized to reservoir volume.

Compact VUD Vacuum Dehydrator

A compact and mobile dehydration and high efficiency filtration solution, the V1 prevent acidity and loss of lubrication properties caused by inefficient dehydration and high ingression.

Ideal for rapidly removing all forms of water including free, emulsified, and dissolved water and gas from hydraulic and lube oils.

HY-PRO hyprofiltration.com/V1

Different by design.

The V1S is optimized for low headspace clearance for use in marine applications and with the S special option, V1S can remove the water without leaving salt behind to cause problems in thruster, steering and propulsion systems.

Results you can see.

Clear covers on the vacuum chamber and condensate collection tank let you see as the V1 removes the water from your oil and collects it in the condensate tank. From there, you can say goodbye as it's drained and removed from your system, for good.

Size matters.

With small size comes great power. Utilizing single phase power supplies, V1 models provide the same unmatched water and particulate removal as larger VUDs on a smaller scale with the added benefit of incredible mobility. And with the ability to use single phase connections for power, you'll have clean, dry fluids anywhere and everywhere you need them.

Integrated intelligence.

The V1 smart relay enabled control panel makes start-up and shut-down operator friendly and safe so that when you press the start button the automatic scripted sequence controls what comes on and when, meaning you don't need three hands to get it going.

Never stops working.

V1 is a workhorse designed for 24/7 unattended operation. With a dual condensate collection tank design, auto water level sensors and automatic acting drain valves, there is no need to stop to drain water.

Completely, entirely, totally, all inclusive.

When it comes to comprehensive filtration and water removal, the buck stops here. V1 customization takes on many forms such as unique size requirements, combining V1 with other technologies (i.e. FRF acid or turbine lube oil varnish removal), or other customer specific needs.

V1 Specifications

Model	V1P	V1S				
Height ¹	50" (127 cm)	45" (114 cm)				
Width ¹	28" (71 cm)	34" (86 cm)				
Depth ¹	28" (71 cm)	24" (61 cm)				
Weight ¹	400 lbs (181 kg)	400 lbs (181 kg)				
Inlet	¾" male JIC	¾" male JIC				
Outlet	½" male JIC ½" male JIC					
Electric Motor	TEFC with overload protection					
Pump	Cast iron, positive displacement gear pump with intern	al relief.				
Vacuum Pump	Dry Rotary Vane					
Operating Temperature	Fluid Temperature 32°F to 180°F (0°C to 82°C)	Ambient Temperature -4°F to 104°F (-20C to 40C)				
Materials of Construction	Frame Carbon steel or stainless steel	Filter assembly Aluminum and carbon steel				
Electric Connection	50' (15 m) power cord supplied with machine.					
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[C]} \ge 1000 (\beta x \ge 200)$	W Stainless steel wire mesh media $\beta x_{[C]} \ge 2$ ($\beta x \ge 2$)				
Fluid Compatibility	Petroleum and mineral based fluids, #2 diesel fuels (sta contact factory for compatibility with fluorocarbon seal skydrol fluid compatibility select fluid compatibility from	option. For phosphate ester or				

¹Dimensions are approximations taken from base model and will vary according to options chosen.

V1 Part Number Builder

V1	Power Option Dispersal Element Media Seal Heater Special Options
Model	P Hand truck style design for maximum mobilityS Low profile design optimized for marine low headspace applications
Power Options	60 Hz 50 Hz 12 120 V ac, 1P 23 230 V ac, 1P
Disperser Element	 Pleated disperser element - all synthetic media (viscosity ≤ ISO VG 220) Metallic packed disperser element (viscosity ≥ ISO VG 460)¹ W Pleated stainless steel disperser element (ISO VG 150-320)
Media Selection	G8 Dualglass Stainless wire mesh 1M $\beta_{2.5} \ge 1000, \beta_1 \ge 200$ 25W 25µ nominal 3M $\beta_{5}_{tcl} \ge 1000, \beta_3 \ge 200$ 40W 40µ nominal 6M $\beta_{7}_{tcl} \ge 1000, \beta_6 \ge 200$ 74W 74µ nominal 10M $\beta_{12}_{tcl} \ge 1000, \beta_{12} \ge 200$ 149W 149µ nominal 16M $\beta_{17}_{tcl} \ge 1000, \beta_{17} \ge 200$ 25M 25M
Seals	 B Nitrile (Buna) V Fluorocarbon E-WS EPR seals + stainless steel support mesh
Heater ¹	 1 kW (power option 12 only) 2.5 kW (power options 22 & 23 only) 4.5 kW (power options 22 & 23 only)
Special Options	 A Auto-condensate drain C E marked for machinery safety directive 2006/42/EC P9² Phosphate ester fluid compatibility modification Stainless components for salt water removal S9⁴ Skydrol fluid compatibility modification T Hose kit (suction & return hoses + wands) V⁵ Inlet control valve (for positive head inlet)

¹Heater is dependent on power option ² When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.

³Only available on V1S model.

When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. ⁵Recommended option.

hyprofiltration.com/V1

COT Turbine Oil Conditioning Skids

Remove harmful particulate and water contamination and achieve target ISO Codes faster with the COT.

Ideal for preventing unplanned downtime and premature component failures in turbine lube systems.

hyprofiltration.com/COT

Size matters.

COT optimizes coalesce and separator flow density to rapidly remove gross free water ingress during steam turbine start-up or in the event of a seal leak. High single pass water removal efficiency that keeps up with ingression so your bearings don't see free or emulsified water.

Setting the new standard.

Sampling and preventative maintenance are no longer optional, they're a necessity. That's why every COT comes standard with properly positioned sample ports to arm you with access to consistently accurate system conditions and letting you know exactly how well your filtration is performing.

Filtration starts with the filter(s).

COT combines high efficiency single pass particulate and water removal to ensure that your turbine oil is always in spec, eliminating premature component failures and downtime. With particulate media options down to $\beta 2.5_{[C]} > 1000$ and 100% synthetic coalesce/ separator elements that remove all free and emulsified water down to saturation point, your turbines will be protected and running more efficiently than ever.

Take control of your systems.

Smart relay and auto water drain make COT a 24/7 unattended, easy-to-operate solution that functions as an in-line contamination barrier for every drop of turbine oil that goes into your turbines. Optional PLC touchscreen enables custom programming so your COT can purify reservoirs on your schedule and even data log ISO Codes and water removal rates so you know your lube is clean and reliable when you're on and off the clock.

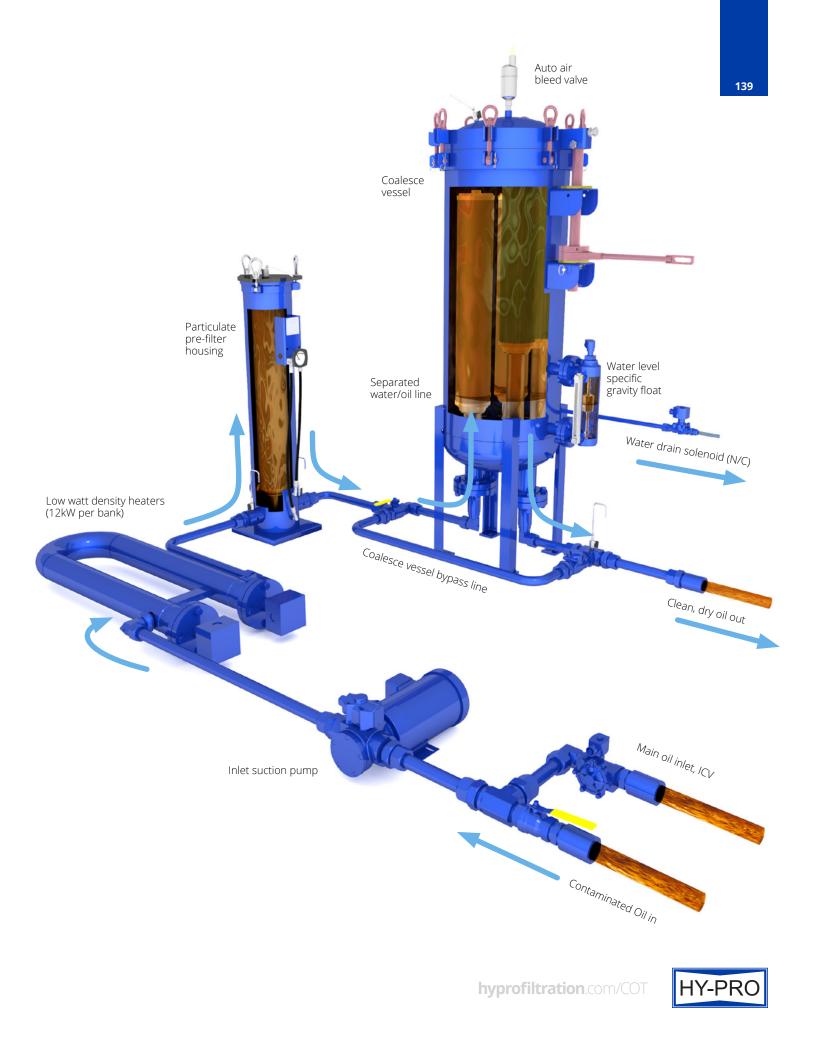
You can't beat the heat.

With no direct contact with the heating element, your turbine oil will safely and quickly get up to temperature without the risk of burning. The programmable temperature control with integral no-flow switch prevents oil damage and allows you to heat your fluids at your own pace. And what's more: all this comes standard on every COT.

Built to exceed your expectations.

Flexible dimension and process arrangement are available with every COT so you get the perfect contamination solution for your turbine lubrication system. Even choose from explosion proof models and color coordinate to fit perfectly with your existing safety standards for the ultimate system in turbine oil conditioning.

The COT Process


How it works

Oil from the system entering the COT through a positive displacement gear pump passes through low watt density heat to achieve the optimum turbine oil temperature for efficient liquid-liquid separation by coalesce, >100°F (38°C).

The first stage of oil conditioning is particulate removal by $\beta_{fc}>1000$ high efficiency glass media element. Next, the oil enters the two stage coalesce vessel where the oil passes through 100% synthetic media coalesce elements. The free and emulsified water coalesces to form larger droplets that overcome the specific gravity of the oil and drop to the bottom of the vessel. Stage two in the coalesce vessel is the separator/ post-filter element that functions as a water barrier for emulsified and small droplets of water that have not reached a size large enough to drop of suspension. After passing through the water barrier, the oil passes through a final stage of particulate removal filtration by $\beta_{2.5_{rcl}}>1000$ media to achieve even lower operating ISO Codes.

The coalesce vessel will achieve single pass water removal from 5000 ppm to <150 ppm under normal operating conditions and oil health. As water collects in the bottom of the coalesce vessel, a specific gravity float reaches a limit indicator that will open the automatic water drain valve and eject the separated water as it is removed to allow for 24/7 continuous operation. When fitted with a totalizing meter on the water drain line, quantity and timing for water removal can be established.

COT Specifications

Model	СОТ5	COT10	COT30		COT60	COT100	
Max Reservoir Size	800 gallons (3000 liters)	1600 gallons (6000 liters)	4000 gallons (15100 liters)		8000 gallons (30300 liters)	13250 gallons (50200 liters)	
Height ¹	65" (165 cm)	83" (211 cm)	88" (224 cm)		88" (224 cm)	100" (254 cm)	
Length ¹	56" (142 cm)	60" (153 cm)	84" (213 cm)		84" (213 cm)	96" (244 cm)	
Width ¹	32" (81 cm)	40" (102 cm)	40" (102 cm)		60" (153 cm)	60" (153 cm)	
Weight ¹	1400 lbs (635 kg)	2000 lbs (907 kg)	2700 lbs (1225 kg)		3400 lbs (1542 kg)	4400 lbs (1996 kg)	
Inlet ²	1" (2.5 cm)	1.5" (4 cm)	2" (5 cm)		3" (7.5 cm)	3" (7.5 cm)	
Outlet ²	1" (2.5 cm)	1" (2.5 cm)	1.5" (4 cm)		2" (5 cm)	3" (7.5 cm)	
Motor Size	1 hp	1.5 hp	5 hp		7.5 hp	10 hp	
Pre-Filter Elements	1	1	1		2	3	
Coalesce Elements	1 x HP538L38-CS3MV ³	2 x HP731L39-CV	5 x HP731L39-CV		8 x HP731L39-CV	10 x HP731L39-CV	
Separator/ Polish Elements	(combination element)	1 x HP582L30-S1MV	3 x HP582L3	0-S1MV	5 x HP582L30-S1MV	9 x HP582L30-S1MV	
Seals	Fluorocarbon						
Operating Temperature	Fluid Temperature 32°F to 200°F (0°C to 93°C)			Ambient Temperature 40°F to 104°F (4°C to 40°C)			
Materials of Construction	Housings Carbon steel with industrial coating				Frame Carbon steel with industrial coating		
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[C]} \ge 1000$ ($\beta x \ge 200$)				Coalesce/Separator Coalesce: 100% synthetic fiber media Separator: TEFLON [®] coated screen (water barrier)		
Fluid Compatibility	Mineral based turbine oil, call factory for synthetic. Cannot be used with AW hydraulic oils or phosphate esters. For water removal in AW hydraulic oils and phosphate esters, see VUD (page 136).						

¹Dimensions are approximations taken from base model and will vary according to options chosen.

³HP538L38C-3MV element combines coalesce and separator element functions into a single element. TEFLON® is a registered trademark of DuPont.

COT Part Number Builder

COT Flow Rate	Power Options Heat Capacity Seal Special Options
Flow Rate ¹	5 gpm (18.9 lpm) 10 gpm (37.9 lpm) 30 gpm (114 lpm) 60 gpm (225 lpm) 100 gpm (379 lpm)
Power Options	60 Hz, 1750 RPM50 Hz, 1450 RPM23°230 V ac, 3P3846460 V ac, 3P41415 V ac, 3P57575 V ac, 3P52
Heat Capacity	12 12 kW 24 24 kW 363 36 kW 483 48 kW 643 64 kW 723 72 kW 843 84 kW X No heaters
Seal	V Fluorocarbon
Special Options	 8 8" (20 cm) solid wheel upgrade A⁴ Auto water drain (manual drain included) B Adjustable coalesce vessel bypass loop C E marked for machinery safety directive 2006/42/EC H Manual reset hour meter J³ Individual heater selector switches for limited amp circuits K Sight flow indicator L Lifting eye kit M Water discharge totalizing meter O On-board PM-1 particle monitor & clean oil indicator light P PLC touch screen control (does not include VFD) Q^{4,5} Maintenance spares & repair kit S Oil sensing safety shut-off in water discharge line T⁴ 10' (3 m) hose kit + wands (JIC female connections) U S0' (15 m) electrical cord (no plug supplied) V Inlet control valve (for positive head application) X Explosion proof - Class 1, Div 2, Group C+D. Consult factory for other explosion proof options. Y VFD variable speed motor frequency control Z⁴ On-site startup training (1 x 10 hour shift)

¹Nominal flow rates at 60 Hz motor speeds. ²Only available with COT5.

³Possible high full amp load (consider special option J).

⁴Recommended option. ⁵Q option repair & spares kit includes several items such as fuses, common rely, panel bulb, and replacement element set for coalesce chamber & particulate housing.

FCLCOT

Turbine Oil Conditioning Filter Cart

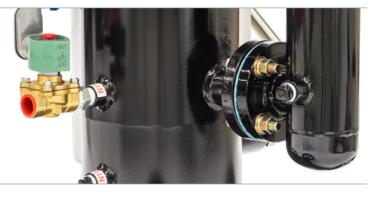
A mobile solution that maintains turbine lube oil by removing water and particulate contamination that can cause corrosion, fluid breakdown, abrasive wear on components, additive precipitation, reduced lubricity, and dielectric strength loss.

Ideal for turbine lube oil, boiler feed pumps, compressors and others R&O applications.

hyprofiltration.com/FCLCOT

Filtration starts with the filter(s).

FCLCOT combines high efficiency single pass particulate and water removal to ensure that your turbine oil is always in spec, eliminating premature component failures and downtime. With particulate media options down to $\beta 2.5_{ICI} > 1000$ and 100% synthetic coalesce/separator elements that remove all free and emulsified water down to 50 ppm, your turbines will be protected and running more efficiently than ever.



Cleaner fluids: greater efficiency.

Water and particulate contamination in turbine oils can lead to decreased output efficiency, metal etching, fluid breakdown, and abrasive wear in hydraulic components among many other costly issues. With a single pass through the FCLCOT, you'll not only remove harmful contaminants but increase your uptime and promote the best environment for your turbine to operate efficiently.

Never stops working.

Designed for 24/7 unattended operation, FCLCOTs with auto water drain technologies provide you with the safety and security to know your turbine oil is clean and dry even when you're off the clock.

Unmatched on the move.

Non-shredding, never flat wheels and easy to maneuver cart design with ergonomic handle mean you get powerful filtration exactly when and where you need it.

Setting the new standard.

Sampling and preventative maintenance are no longer optional, they're a necessity. That's why every FCLCOT comes standard with properly positioned sample ports to arm you with access to consistently accurate system conditions and letting you know exactly how well your filtration is performing.

Completely customizable.

Whether you need the heavy duty off-road tires for greater mobility or add one of several inlet strainer options, each and every FCLCOT can be built specifically to suit your needs. And with options for both convenience and tailoring for specific applications, you'll be sure to get the perfect solution for all your contamination problems.

FCLCOT Specifications

Dimensions ¹	Height 62" (158 cm)	Width 30.5" (77 cm)	Depth 29" (74 cm)	Weight 379 lbs (172 kg)		
Connections	Inlet 1" male JIC	Outlet 1" male JIC		Hoses 1" x 10 ft (2.4 m)		
Element Configuration	Particulate filter HP75L8-3MV		Coalesce/Separ HP538L38-CS3M			
Seals	Fluorocarbon					
Operating Temperature	Fluid Temperature 80°F to 250°F (27°C to 121°C)		Ambient Temp 40°F to 104°F (4°C to 40°C)	erature		
Materials of Construction	Housings Carbon steel with industrial co	Hoses ating Reinforced sy	ynthetic	Wands Stainless steel		
Electric Motor	TEFC, 56-145 frame 0.5 hp, 1450-1750 RPM					
Motor Starter	MSP (motor starter/protector) in an IP65, aluminum enclosure with short circuit and overload protection.					
Electric Connection	Voltages 230 V ac and under, single phase: 35' (11 m) retractable cord reel included. Power Option 12 includes NEMA 5-15 plug. Voltages over 230 V ac: 35' (11 m) power cord included.					
Pump	Cast iron, positive displacement gear pump with internal relief. Maximum pressure on pump inlet 15 psi (1 bar). Consult factory for higher pressures.					
Pump Bypass	Full bypass at 150 psi (10 bar)					
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ² 35' (11 m) retractable air hose included when pneumatic option selected. Replaces 35' (11m) electric cord reel.					
Media Description	M G8 Dualglass, our latest genera high performance glass media & lubrication fluids. $\beta x_{[c]} \ge 1000$	for all hydraulic		rator synthetic fiber media ON® coated screen (water barrier)		
Fluid Compatibility	Mineral based turbine oil, call factory for synthetic. Cannot be used with AW hydraulic oils or phosphate esters. For water removal in AW hydraulic oils and phosphate esters, see VUD (page 124).					
Hazardous Environment Options	Select pneumatic powered unit (Power Option 00) or explosion proof NEC Article 501, Class 1, Division 1, Group C+D. Call for IEC, Atex or other requirements. If Power Option X selected, no electrical cord or cord reel will be included.					

Ð

c(UL)

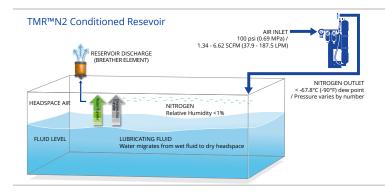
¹Dimensions are approximations taken from base model and will vary according to options chosen. ²Air consumption values are estimated maximums and will vary with regulator setting. TEFLON® is a registered trademark of DuPont.

FCLCOT Part Number Builder 145

FCLCOT	Flow Rate Indicator Power Options Hose Connection Special Options
Flow Rate ¹	05 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 2 gpm (7.5 lpm)
ΔP Indicator ²	 D 22 psid visual gauge + electric switch E 22 psid visual gauge
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & flow meter included. 22 208-230 V ac, 3P 40 380-440 V ac, 3P 52 525 V ac, 3P 32 208-230 V ac, 3P 52 525 V ac, 3P 52 525 V ac, 3P 46 460-480 V ac, 3P 52 525 V ac, 3P 52 525 V ac, 3P 57 575 V ac, 3P 52 525 V ac, 3P 50 For outdoor use K_ Add X prefix to power option listed above. Not available with (00) Pneumatic Option.
Hose Connection	 G Female BSPP swivel hose ends, no wands S Female JIC swivel hose ends, no wands W Female JIC swivel hose ends, with wands
Special Options	 A1 Electrically powered automatic water drain B Complete filter bypass line C CE marked for machinery safety directive 2006/42/EC D High filter ΔP auto shutdown E 100 mesh cast iron basket strainer F Filter element ΔP gauge with tattle tale follower needle G Spill retention pan with fork guides (industrial coated steel) H1 10 ft (3 m) return line hose extension H2 20 ft (6 m) return line hose extension J Add pressure gauge between pump & filter assembly K HP75L8-149W Spin-On suction strainer L High filter element ΔP indicator light M Total system flow meter (120 cSt max) N PM-1 ready (plumbing only) On-board PM-1 particle monitor & clean oil indicator light R Spill retention pan with wheels (industrial coated steel) S⁴ All wetted components 304 or higher stainless steel T Foam filled off-road tires for rugged environment U CUL and/or CSA marked starter enclosure for Canada W Automatic air bleed valve Z On site start-up training

¹Nominal flow rates at 60 Hz motor speeds. ²Particulate filter only. Coalesce housing is equipped with sliding differential indicator. ³PM-1 will not function properly in the presence of free or emulsified water at or above saturation point. If selected, PM-1 is installed downstream of the filtration. ⁴With exception to cast iron gear pump.

HY-PR


TMR[™]-N₂ Highly effective water removal system for atmospheric breathing lubricant reservoirs

Total Moisture Removal-Nitrogen systems (TMR[™]-N₂) cost effectively remove all 3 forms of water from lubricants and hydraulic fluids through mass transfer which is a highly effective, non-mechanical process. TMR[™]-N₂ generates a constant flow of high purity N₂ which is injected into the head space of the lubricant reservoir to remove and maintain very low water levels.

hyprofiltration.com/TMRN2

Control water contamination.

Produced Nitrogen is vented at low flow out the breather element, eliminating the effects atmosphere has on the fluid. $TMR^{m}-N_2$ systems are regulated, intrinsically safe, and have a manually adjusted flow control valve with flow meter.

Clean, dry, healthy oil.

Dry air mass transfer extracts dissolved water from the fluid and since the nitrogen introduced by the TMR^{\mathbb{M}}-N₂ is an inert gas, it also removes combustible gases (i.e. CO₂, C₂H₂, CO, C₂H₄, C₂H₆, CH₄, and H₂) from the oil to reduce oxidation and fluid breakdown.

Extend your fluid life.

A properly sized TMR[™]-N₂ is designed to remove up to 200 ppm of water per day under normal operating conditions to minimize oxidation and fluid breakdown and extend the useful life of your oil while protecting your critical components.

TMR⁻N₂ Specifications

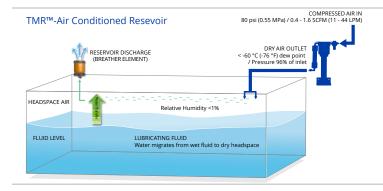
Model	TMRN ₂ -601902	TMRN ₂ -601903	TMRN ₂ -601904	TMRN₂-601905 ²	
Height ¹	30" (76 cm)	48" (122 cm)	48" (122 cm)	70" (178 cm)	
Width ¹	20" (51 cm)	20" (51 cm)	20" (51 cm)	20" (51 cm)	
Depth ¹	7" (18 cm)	7" (18 cm)	7" (18 cm)	7" (18 cm)	
Weight	38 lbs (17 kg)	44 lbs (20 kg)	48 lbs (22 kg)	55 lbs (9 kg)	
Inlet	1⁄4" FNPT	1/4" FNPT	1/4" FNPT	1/4" FNPT	
Outlet	¼" FNPT	1/4" FNPT	1⁄4" FNPT	1⁄4" FNPT	
Air Consumption	< 1.2 SCFM	< 2.0 SCFM	< 3.6 SCFM	< 6.0 SCFM	
Headspace Volume	< 15 ft ³ (< 0.42 m ³)	< 22 ft ³ (< 0.62 m ³)	< 36 ft³ (< 1.02 m³)	< 100 ft ³ (< 2.8 m ³)	
Fluid Operating Temperature	30°F to 225°F (0°C to 105°C)	30°F to 225°F (0°C to 105°C)	30°F to 225°F (0°C to 105°C)	30°F to 225°F (0°C to 105°C)	
Materials of Construction	Frame Powder coated steel				

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²Ships in two pieces. ³Minimum 100 psig (6.89 barg).

Model	2 3 4 5	TMR [™] -N ₂ Nitrogen Generator for reservoir volume < 400 gal (1,500 liter) TMR [™] -N ₂ Nitrogen Generator for reservoir volume < 800 gal (3,050 liter) TMR [™] -N ₂ Nitrogen Generator for reservoir volume < 2000 gal (7,650 liter) TMR [™] -N ₂ Nitrogen Generator for reservoir volume < 3000 gal (11,500 liter)
Special	M1	Manifold to share TMR ^{M} -N ₂ with 2 reservoirs (601902 and 601903 models only)
Options	M2	Manifold to share TMR ^{M} -N ₂ with 2 reservoirs (601904 and 601905 models only)

hyprofiltration.com/TMRN2


TMR-Air Total Moisture Removal Systems

TMR[™] Air systems cost effectively remove all 3 forms of water from lubricants and hydraulic fluids through mass transfer which is a highly effective, non-mechanical process. Using TMR[™] Air exploits the principle of chemical equilibrium in a gentle, energy efficiency method.

hyprofiltration.com/TMR

Remove water: protect your systems.

With TMR[™]-Air, dry air is generated at the source, providing unlimited capacity to reduce existing moisture in the reservoir and oils. The water is released from the oil to the super dry air. TMR[™]-Air is a maintenance solution that will maintain water at very low levels (<50 ppm total or in the ideal range between 200~300 ppm for EHC fluids), reducing the rate of lubricant break-down.

Eliminate water at its source.

Free flowing dry air is exhausted out of the breather element, reversing the typical flow configuration of reservoir air and eliminating one of the key ingression points for water and particulate contamination.

Extend your fluid life.

A properly sized TMR^{*}Air is designed to remove up to 100 ppm of water per day under normal operating conditions to minimize oxidation and fluid breakdown and extend the useful life of your oil while protecting your critical components.

TMR⁻-Air Specifications

Height	24" (61 cm)
Width	14" (35 cm)
Depth	5" (13 cm)
Weight	21 lbs (10 kg)
Inlet	¼" FNPT
Outlet	¼" FNPT
Headspace Volume	< 36 ft ³ (< 1.02 m ³)
Flow Rate Manual Control with Flow Meter	0-60 SCFH (0-1680 LPH)
Preset Flow Rate	30 SCFH (840 LPH)
Air Consumption Max @ 100 psi/0.69 MPa (SCFM/LPM)	0-180 SCFH (0-5040 LPH)
Fluid Operating Temperature	30°F to 225°F (0°C to 105°C)
Materials of Construction	Frame Powder coated steel

TMR⁻ Air Part Number Builder

TM	R-60090	
		Model

Model	4	TMR [™] -Air for reservoir volume ≤ 2000 gal (7,600 liter)
Special Options	M1	Manifold to share TMR [™] -Air with 2 reservoirs

150

LCS Liquid Conditioning Station

Begin filtration and contain contamination before it ever enters your plant to protect your equipment and your bottom line. Built with your convenience in mind and completely customizable for size and fluids, the LCS is a complete contamination solution for hydraulic and lube oil storage and handling.

hyprofiltration.com/LCS

Everything you need. Within arms reach.

Your day at work is hard enough. That's why we've built the LCS with your convenience in mind. Everything you need, conveniently placed for maximum accessibility. From start-up to clean up, all of your daily activities come without the need for a ladder.

Say goodbye to cross contamination.

Dedicated pump, filter and plumbing for each tank maintain fluid integrity and allow multiple fluids to be filtered exclusively and simultaneously.

The best in filtration³.

Filter fluids as they are added to and dispensed from the reservoirs. Recirculate fluids inside the reservoirs for a third level of unparalleled fluid cleanliness and unimaginably low ISO Codes. And with DFE rated media options down to $\beta 2.5_{CI} \ge 1000$ you can be sure contamination stays exactly where you want it: out of your fluid.

Take control of your systems.

The definition of brains and brawn, the control panel on the LCS regulates all the system operations so you can filter and dispense your fluids worry-free. Tucked back and out of the way, once you're up and running you might as well forget it's even there.

Size matters.

Packed with as many reservoirs as your heart desires, the LCS is a behemoth with power that can't be denied. With space for 70 gallons of fluid in each standard reservoir, you can kiss the rows of scattered oil drums goodbye. Or if 70 gallons isn't enough for you, reservoirs can be sized up to 250 gallons so you'll have all your fluids clean, dry, and in one place.

Perfectly tailored to fit your needs.

Label designs, symbols and colors are tailored for each fluid to fit your existing safety and identification standards. To take it even further, each filtration system is set up specifically for the type and viscosity of its specific fluid, meaning you get the perfect contamination solutions for each and all of your fluids.

Minimize the mess.

152

Dual drip pans allow draining spent filters directly within the Workstation, eliminating oily filter transfer and subsequent oil clean-up.

Setting the new standard.

Sampling and preventative maintenance are no longer optional, they're a necessity. Knowing your fluids are clean is the first step in prolonging the life of your systems and critical components. That's why every LCS comes standard with easy-to-access sample ports in their proper positions so you can always know you're putting clean oils into your systems.

A breath of fresh air.

With built in check valves (0.1 psi, 0.007 bar) to maximize lifespans, Hy-Dry desiccant breathers on each reservoir help remove water contamination from your oils and prevent cross contamination between fluids.

Let there be light.

Integrated LED lights illuminate the Workstation for dispensing fluid, changing elements and reading gages even in poorly lit environments.

Built for industrial use.

Rated to hold 5000 pounds each, the tiered shelves and rock solid frame will handle your plant's filtration needs without breaking a sweat.

LCSX Add-on Kit

For applications with existing tanks or for building your own lube room, the LCSX Add-on Kit provides all the filtration of the LCS in a self-contained, drop-in platform perfect for as many units as you desire and expanding on your time.

LCS Specifications

Consult Factory for Part Numbers & Pricing

Model	LCS2		LCS4		LCS6		
Height	96" (244 cm)		96" (244 cm)				
Width	50" (127 cm)		88" (235 cm)		112" (285 cm)		
Depth	60" (152 cm)	" (152 cm) 60" (152 cm) 60" (152					
Inlets	1" FNPT		1" FNPT		1" FNPT		
Outlets	Open Nozzle + ¾ N	Male QD	Open Nozzle + ¾	Male QD	Open Nozzle + ¾	Male QD	
Filter Element Configuration	S75 Spin-On, S75D	Spin-On, MF3 L13 ar	nd optional 2 stage s	ystems available			
Seals	Fluorocarbon or Ni	trile (Buna)	Fluorocarbon or N	itrile (Buna)	Fluorocarbon or N	itrile (Buna)	
∆P Gages	Sliding, Pop-Up, Vis	liding, Pop-Up, Visual 0-25 psid (1.7 bard) available.					
Operating Pressure	150 psi (10 bar) ma	ximum standard					
Operating Temperature	50°F to 100°F (10°C to 38°C)		50°F to 100°F (10°C to 38°C)		50°F to 100°F (10°C to 38°C)		
Materials of Construction	Reservoirs Industrial coated steel	Facing Industrial coated aluminum	Frame Powder coated steel	Grate Aluminum	Plumbing Plated steel hydraulic fittings + stainless tubing	Hoses Reinforced synthetic	
Reservoir Size	70 gal (265 liter), 15	50 gal (568 liter), 250	gal (946 liter) availat	ole standard. Contac	t factory for additiona	al sizes.	
Electric	cUL listed industria	l control panels. All v	voltages available.				
Electric Motors	TEFC, 56-184 frame 0.5-1 hp, 1200-1500	e D RPM	TEFC, 56-184 fram 0.5-1 hp, 1200-150		TEFC, 56-184 fram 0.5-1 hp, 1200-150		
Motor Starter	MSP (motor starter	/protector) with sho	rt circuit and overloa	d protection.			
Pumps		displacement gear pu si (1 bar). Consult fac			ure		
Pump Bypass	Full bypass at 150 p	osi (10 bar)²					
Media Description	M G8 Dualglass, our la of DFE rated, high p media for all hydra fluids. $\beta x_{[C]} \ge 1000$ (performance glass ulic & lubrication	A G8 Dualglass high media combined v scrim. $\beta x_{[C]} \ge 1000$	vith water removal	W Stainless steel wire media $\beta x_{[c]} \ge 2$ (βx		
Viscosity	10-5000 cSt						
Fluid Compatibility		eral based fluids (sta thetic fluids use fluo			er, and		

Custom Equipment

Application based contamination solutions tailored to meet your exact needs and exceed your expectations. Call Hy-Pro for more information.

Super high viscosity.

Applications such as dragline mining require oils in excess of ISO VG 680 that were previously considered unfilterable. Across the mines of Canada for more than three years, our dragline optimized filter skids have been eliminating unplanned downtime and maintenance in fluids with viscosities as high as ISO VG 1500 and temperatures down to 0°C.

Compact size restrictions.

Overcrowded plants and streamlined vessels require careful consideration when integrating filtration systems. Engineered for maximum efficiency in minimal space, our filtration systems are designed to excel at maximizing your efficiency no matter the application or the space requirements.

Explosion proof and code certified.

Navigating the red tape of safety classifications can be a nightmare. Take the hassle out of your filtration with systems designed and built to meet the regulations of nearly any certifications required.

Extreme temperatures.

Whether you're removing varnish from turbine oil in the deserts of the Middle East or particulate from lube oil in the frozen tundra of the Arctic Circle, Hy-Pro can integrate specialized cooling and heating with smart controls to tackle contamination in any environment. Gearboxes running too hot? Hy-Pro can design and build a dual function solution to condition the oil and maintain your ideal operating temperature.

Mobile fluid handling.

Integrating fluid storage and mobility has never been easier with the ability to add reservoirs to any standard product line or a completely customized unit. Take clean fluids with you to top off reservoirs or completely replace discarded oil in as large of reservoirs as your heart desires.

Color coordinated to safety standards.

While we think Hy-Pro Blue is the perfect color for our equipment, all of our units can be tailored to meet your existing safety and identification standards.

TF4 In-Tank Filter Assembly

Ideal for installation on the return line to remove contaminant ingested or generated by the system.

Max Operating Pressure: 100 psi (6.9 bar)

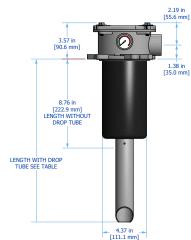
hyprofiltration.com/TF4

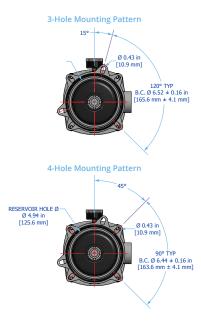
Elements that go beyond industry standard.

Hy-Pro's DFE rated G8 dualglass elements are rated to assure performance even when exposed to the toughest conditions that hydraulic systems can generate. Designed to provide the best filtration and ease of use, the HP4C coreless element gives you more options for disposal, meaning you improve your environmental impact **and** your bottom line.

Works with your system.

Available with one or two inlet ports (180° orientation) for maximum flexibility of installation, you'll be amazed at how easily the TF4 integrates into your system. For applications requiring AIAG HF4 automotive standards compliance, the H4 special option incorporates the HPK filter element to ensure you meet compatibility requirements and exceed efficiency expectations.


Minimize the mess.


With most of the assembly inside the reservoir, the top loading housing on the TF4 provides easy and clean access when servicing or changing the element. To top it off, keyways on the twist open cover require only loosening of the bolts to access the element so lost parts during service becomes a thing of the past.

TF4 Installation Drawing

The perfect fit.

Coming in at just over 7" (185 mm) in diameter, the TF4 is the perfect compact solution for keeping your mobile equipment or power units operating at peak performance. And with mounting patterns to fit both North American and European formats, you'll get clean oil and increased efficiency no matter where you are.

Drop Tube Option	Length including Drop Tube
4" Nominal Extension	14.3" (363 mm)
6" Nominal Extension	16.3" (414 mm)
8" Nominal Extension	18.3" (465 mm)
9" Nominal Extension	19.3" (490 mm)
10" Nominal Extension	20.3" (516 mm)
12" Nominal Extension	22.3" (566 mm)

TF4 Specifications

Dimensions	See Installat	ion Drawings o	n page 157	for model specific	dimensions.				
Operating Temperature	Fluid Temp 30°F to 225° (0°C to 105°	°F			Ambient Temperature -4°F to 140°F (-20C to 60C)				
Operating Pressure	100 psi (6.9	bar) maximum							
Pressure Switch Trigger	22 psi (1.5 b	ar)							
Element Collapse Rating	HP4CL9 150 psid (10	.3 bard)			HPKL9 290 psid (20 ba	rd)			
Integral Bypass Setting	25 psid (1.7	bard)							
Materials of Construction	Head Cast alumin	um			Bowl Polyammide				
Media Description	of DFE rated media for al	s, our latest ger l, high performa l hydraulic & lul ≥ 1000 (βx ≥ 200	ance glass brication	A G8 Dualglass hig media combine scrim. β x _[C] ≥ 10	d with water remov		ess steel wire m βx _[C] ≥ 2 (βx ≥ 2		
Replacement Elements	To detern Configurati Standard Fil Special Opti	on ter Element	Filter El HP4CL9	ement Part Num	Code] [Seal Code]	es from yc	Dur assembly Example HP4CL9–10, HPKL9–6ME	AV	
Fluid Compatibility					l ester, phosphate ion or contact facto				
Filter Sizing ¹	filter assem	bly bypass setti	ng. See page	e 22 for filter assei	rrection should not nbly sizing guidelin -Pro for sizing reco	es & exampl	es. For		
ΔP Factors ¹	Units	Media 1M	3M	6M	10M	16M	25M	**W	
	psid/gpm	0.2370	0.2000	0.1550	0.1390	0.1360	0.1310	0.0240	

1Max flow rates and ΔP factors assume u = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

0.0028

0.0025

0.0025

0.0024

0.0004

0.0036

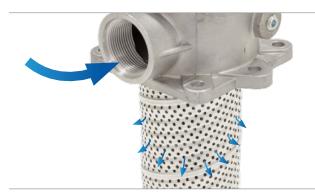
0.0043

bard/lpm

TF4 Connection			JN Options	nber B	uilder	159
Connection	B20 N20	t Option 1.25" BSPT 1.25" NPT 1.25" SAE	40 g 40 g	x Flow Rate ;pm (151 lpm) ¹ ;pm (151 lpm) ¹ ;pm (151 lpm) ¹		
Bypass	2	Integrated bypass - 25 psid (I.7 bard))		
Pressure Indicator	DX E G X	Electric pressure switch (DIN Electric switch with flying lea Visual pressure gauge No indicator (port plugged)				
Special Options	D2 ² H4 ³ 4 6 8 9 10 12	Dual inlet ports, 180° orientati HPK series element for autom 4" (10 cm) nominal drop tube 6" (15 cm) nominal drop tube 8" (20 cm) nominal drop tube 9" (23 cm) nominal drop tube 10" (25 cm) nominal drop tube	otive star extensior extensior extensior extensior extensior	1 1 1 1 20		
Media Selection	1M 3M 6M 10M 16M	Dualglass $\beta_{2.5_{[C]}} \ge 1000, \beta_1 \ge 200$ $\beta_{5_{[C]}} \ge 1000, \beta_3 \ge 200$ $\beta_{7_{[C]}} \ge 1000, \beta_6 \ge 200$ ³ $\beta_{12_{[C]}} \ge 1000, \beta_{12} \ge 200$ $\beta_{17_{[C]}} \ge 1000, \beta_{17} \ge 200$ $\beta_{22_{[C]}} \ge 1000, \beta_{25} \ge 200$	3A 6A 10A	Dualglass + water removal $\beta_{5_{[C]}} \ge 1000, \beta_3 \ge 200$ $\beta_{7_{[C]}} \ge 1000, \beta_6 \ge 200$ $\beta_{12_{[C]}} \ge 1000, \beta_{12} \ge 200$ $\beta_{22_{[C]}} \ge 1000, \beta_{25} \ge 200$	Stainless wire mesh25W25μ nominal40W40μ nominal74W74μ nominal149W149μ nominal	
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stainless steel su	pport m	esh		

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Available with S4 port only. ³Replaces standard HP4C series element with HPKL9. Use 12M or 12A for respective media code in place of 10M or 10A.

TFR In-Tank Filter Assemblies


Hy-Pro TFR in-tank filter assemblies are ideal for particulate contamination removal in hydraulic power unit return line and mobile hydraulic OEM installations.

Max Operating Pressure: 150 psi (10 bar)

Filtration starts with the filter.

Advanced DFE rated filter elements deliver lower operating ISO Codes with high efficiency particulate removal and retention efficiency. With a range of media options down to $\beta 2.5_{cl} > 1000 +$ water absorbing options, you get the perfect element for your application, every time.

Inside to out flow.

The dirtiest fluid in you system can be found before the filter element in the filter housing. Here, contaminants collect in the filter media and unless disposed of properly, can wreak havoc on your system after element service. That's why when you service the TFR element, which utilizes inside-to-outside flow, you remove all the dirt and contaminated fluid with the element.

Integral element bypass.

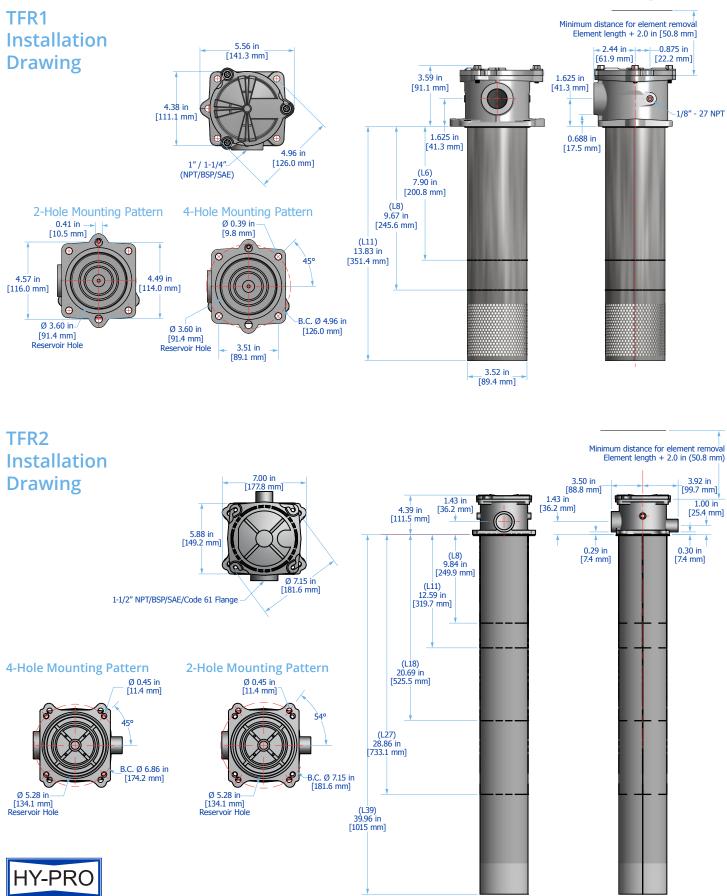
TFR elements include an integral, zero-leak bypass valve. Every time an element is changed a new bypass is installed eliminating bypass valve fatigue and leakage over time.

Minimize the mess.

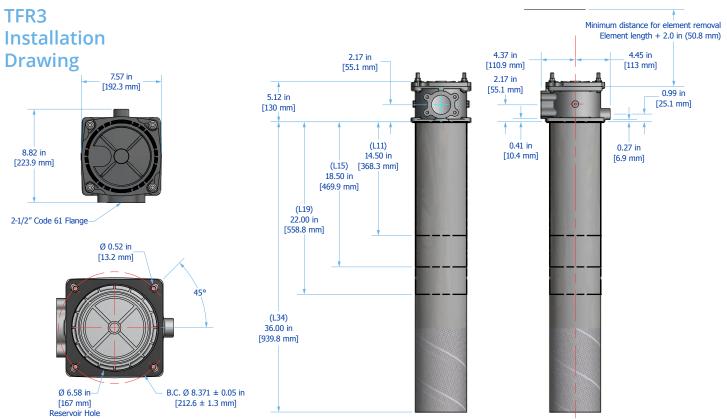
With most of the assembly inside the reservoir, the top loading TFR housing provides easy and clean access during element service, no slippery spin-ons to handle. With the keyway cover and bolt arrangement lost parts during element service become a thing of the past.

Compact and sized for your system.

With three head sizes, multiple connection sizes, filter element lengths and diffuser options to choose from, TFR assemblies smoothly deliver clean fluids back to tank with a design that keeps things compact.

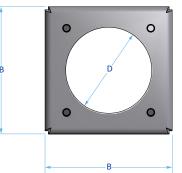


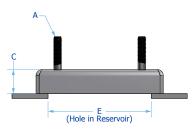
Eliminate aeration.


Smaller reservoirs with higher turnover and less settling time typically lead to aeration as fluids are churned and recirculated. The unique TFR element design minimizes turbulence and integral diffuser tube prevents aeration in compact hydraulic and high velocity return line applications by maintaining a column of fluid outside the filter element and above the fluid line to ensure your fluids are returned clean and without aeration.

TFR Installation Drawings

TFR Installation Drawings





TFR Weld Flange Installation Drawing

Series	TFR1	TFR2	TFR3
A	5/16" - 18 UNC-2A	3/8" - 16 UNC-2A	3/8" - 16 UNC-2A
В	5.33"	7.18"	21.2
	(135.4 mm)	(18.2 mm)	(21.2 mm)
С	1.00"	1.00"	1.00"
	(25.4 mm)	(25.4 mm)	(25.4 mm)
D	3.59"	5.30"	6.67"
	(91.2 mm)	(134.6 mm)	(169.4 mm)
E	3.8-4.5"	5.5-6.25"	6.75-7.25"
	(96.5-114.3 mm)	(139.7-158.75 mm)	(171.5-184.2 mm)

TFR Specifications

Dimensions	See Instal	lation Drawir	ngs on page 16	52-163 for m	nodel specifi	c dimension:	S.				
Operating		perature			nt Tempera	ature					
Temperature	30°F to 22 (0°C to 10			-4°F to (-20C to							
	`	0 bar) maxim	um	(2000	0 000)						
Operating	100 p31(1	o bury maxim									
Pressure	22 : (4 5	• 1									
Pressure Switch Trigger	22 psi (1.5 45 psi (3.1										
Visual Gauge		22 psi (0-1.5 bar), green to red									
	0-45 psi (0)-3.1 bar), gre									
Element		psid (6.9 bard)									
Collapse Rating											
Integral			dard. For 50 p								
Bypass Setting	Part Num	ber Builder a	nd add "-50" to	o the end of	Replaceme	nt Element p	oart numbe	ir.			
Materials of	Head			Diffus				Element Bypa	iss Valve		
Construction	Cast alum	inum		Powde	r coated or _l	olated steel	ł	Plated steel			
Media	Μ			Α			1	N			
Description	of DFE rat media for	ed, high perf	st generation formance glass & lubrication ≥ 200)	s media		performance ⁄ith water rei (βx ≥ 200)		Stainless steel media βx _[C] ≥ 2			
Replacement	L		acement el	ements, ι	ise corres	ponding c	odes fro	m your ass	embly pa	rt number:	
Elements	Code	Code		Filter Element Part Number Exar							
	1	2 3	HPTFR1L[Ele HPTFR1L[Ele						HPTFR1L HPTFR1L	6-6MV 6-6MV-50	
	2	2	HPTFR2L[Ele	HPTFR2L[Element Length Code] - [Media Selection Code][Seal Code] HPTFR2L27-10AB							
	3	3		HPTFR2L[Element Length Code] – [Media Selection Code][Seal Code] – 50 HPTFR2L27–10AB–50 HPTFR3L[Element Length Code] – [Media Selection Code][Seal Code] HPTFRL19–3ME-WS							
	5	2		HPTFR3L[Element Length Code] – [Media Selection Code][Seal Code] HPTFRL19–3ME-W HPTFR3L[Element Length Code] – [Media Selection Code][Seal Code] – 50 HPTFRL19–3ME-W							
Fluid Compatibility			l based fluids tic fluids use fl					nd			
Filter Sizing ¹	filter asse	mbly bypass	lement ΔP afte setting. See pa me cold start	age 22 for fi	lter assembl	ly sizing guid	lelines & e>	amples. For			
ΔP Factors ¹	Model	Length	Units	Media							
		0		1M	3M	6M	10M	16M	25M	**W	
	TFR1	L6	psid/gpm	0.5640	0.4759	0.3688	0.3308	0.3236	0.3117	0.0571	
		L8	bard/lpm psid/gpm	0.0103	0.0087	0.0067	0.0060	0.0059	0.0057	0.0010	
		LO	bard/lpm	0.4840	0.4090	0.0058	0.2842	0.2781	0.2079	0.0009	
		L11	psid/gpm	0.3379	0.2852	0.2210	0.1982	0.1939	0.1868	0.0342	
			bard/lpm	0.0062	0.0052	0.0040	0.0036	0.0035	0.0034	0.0006	
	TFR2	L8	psid/gpm	0.2370	0.2000	0.1550	0.1390	0.1360	0.1310	0.0240	
		L11	bard/lpm	0.0043	0.0036	0.0028	0.0025	0.0025	0.0024	0.0004	
			psid/gpm bard/lpm	0.1774 0.0032	0.1497 0.0027	0.1160 0.0021	0.1041 0.0019	0.1018 0.0019	0.0981 0.0018	0.0180 0.0003	
		L18	psid/gpm	0.10032	0.0027	0.0660	0.0019	0.0019	0.0558	0.0003	
		210	bard/lpm	0.0018	0.0016	0.0012	0.0011	0.0011	0.0010	0.0002	
	TFR3	L11	psid/gpm	0.1102	0.0930	0.0721	0.0646	0.0632	0.0609	0.0112	
			bard/lpm	0.0020	0.0017	0.0013	0.0012	0.0012	0.0011	0.0002	
		L15	psid/gpm	0.0834	0.0704	0.0545	0.0489	0.0479	0.0461	0.0084	
		140	bard/lpm	0.0015	0.0013	0.0010	0.0009	0.0009	0.0008	0.0002	
		L19	psid/gpm bard/lpm	0.0688	0.0580	0.0450	0.0403	0.0395 0.0007	0.0380 0.0007	0.0070	
								11111111/		0.0001	
		L34	psid/gpm	0.0013	0.0011	0.0008	0.0007	0.0228	0.0220	0.0040	

 1 Max flow rates and ΔP factors assume υ = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

TFR Part Number Builder

165

TFR Series	Connection Length Bypass	Indicator Special Options Media	Seal
Series	Series11.25" maximum inlet21.5" maximum inlet32.5" maximum inlet	Max Flow Rate 40 gpm (151 lpm) ¹ 60 gpm (227 lpm) ¹ 150 gpm (568 lpm) ¹	
Connection	TFR1 B16 1" BSPT (tapered) B20 1.25" BSPT (tapered) N16 1" NPT S16 1" SAE S20 1.25" SAE	TFR2 B24 1.5" BSPT (tapered) F24 1.5" Code 61 flange N24 1.5" NPT S24 1.5" SAE	TFR3 F40 2.5" Code 61 flange
Element Length ²	TFR1 6 6" (15 cm) nominal 8 8" (20 cm) nominal 11 11" (28 cm) nominal	8 8" (20 cm) nominal 11 11" (28 cm) nominal 18 18" (46 cm) nominal 27 27" (69 cm) nominal 39 39" (99 cm) nominal	TFR3 11 11" (28 cm) nominal 15 15" (38 cm) nominal 19 19" (48 cm) nominal) 34 34" (86 cm) nominal
Bypass	 2³ Integrated bypass - 25 psid (1.7 3⁴ Integrated bypass - 50 psid (3.4 		
Pressure Indicator	 DX Electric pressure switch (DIN constraints) E Electric switch with flying leads G Visual pressure gauge X No indicator (port plugged) 		
Special Options	R⁵ Exclude diffuser tubeW Reservoir weld flange		
Media Selection	$\begin{array}{ll} \textbf{G8 Dualglass} \\ \textbf{1M} & \beta 2.5_{[c]} \geq 1000, \ \beta 1 \geq 200 \\ \textbf{3M} & \beta 5_{[c]} \geq 1000, \ \beta 3 \geq 200 \\ \textbf{6M} & \beta 7_{[c]} \geq 1000, \ \beta 6 \geq 200 \\ \textbf{10M} & \beta 12_{[c]} \geq 1000, \ \beta 12 \geq 200 \\ \textbf{16M} & \beta 17_{[c]} \geq 1000, \ \beta 17 \geq 200 \\ \textbf{25M} & \beta 22_{[c]} \geq 1000, \ \beta 25 \geq 200 \end{array}$	$ \begin{array}{ll} \textbf{G8 Dualglass + water removal} \\ \textbf{3A} & \beta 5_{ICI} \geq 1000, \ \beta 3 \geq 200 \\ \textbf{6A} & \beta 7_{ICI} \geq 1000, \ \beta 6 \geq 200 \\ \textbf{10A} & \beta 12_{ICI} \geq 1000, \ \beta 12 \geq 200 \\ \textbf{25A} & \beta 22_{ICI} \geq 1000, \ \beta 25 \geq 200 \\ \end{array} $	 Stainless wire mesh 25W 25μ nominal 40W 40μ nominal 74W 74μ nominal 149W 149μ nominal
Seals	 B Nitrile (Buna) V Fluorocarbon E-WS EPR seals + stainless steel support 	port mesh	

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Improper length selection could result in reservoir foaming. Consider diffuser and element length and anticipated reservoir

fluid level when sizing. To protect against foaming, using longer lengths is recommended. ³Standard Bypass Rating. Consult Hy-Pro for alternate valve setting. ⁴When selected, add "-50" to end of replacement element part number.

⁵Excluding diffuser tube can result in reservoir foaming in high flow density applications.

LF(M) High Viscosity Filter Assemblies

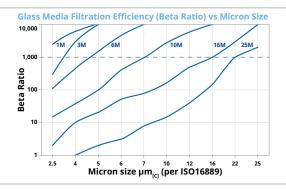
Low pressure filter assemblies optimized for high flow hydraulic, high viscosity lube and heavily contaminated fuel applications.

Max Operating Pressure: 150 psi (10 bar) Available options up to 1000 psi (68.9 bar)

hyprofiltration.com/LF

Filtration starts with the filter.

The oversized coreless filter element in every LF delivers lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass so with every filter change you get a new bypass along with peace of mind.


Element configuration & media options.

With media options down to $\beta 0.9_{C} > 1000$, insoluble varnish removal and water absorbing options, you get the perfect element for your application, every time. Element configurations include Hy-Pro HP106 and HP107 coreless style elements with integral, zero-leak bypass valves. For those plants using 8314 style industry standard elements, the HP8314 offers an improved bypass valve design.

Built for industrial use.

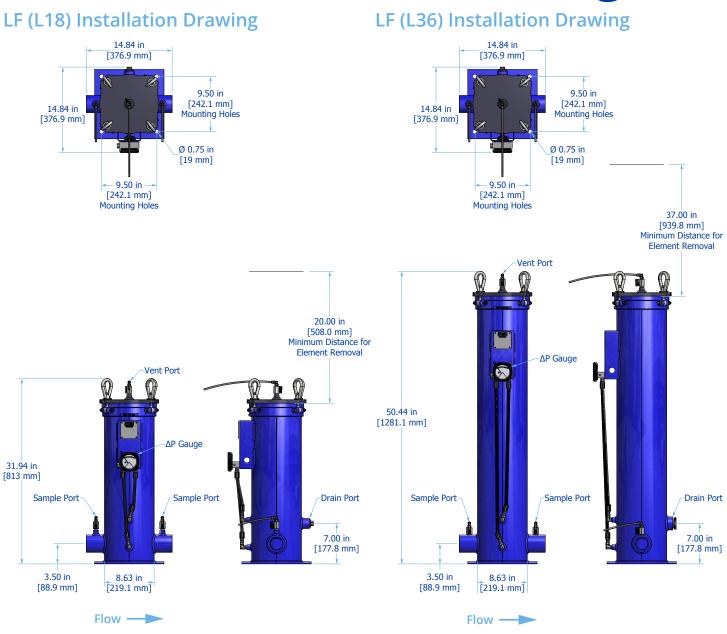
Constructed from heavy duty carbon steel (standard) or the optional 304 or 316 stainless steel, the LF filter housings are designed to excel in even the toughest industrial conditions. Multiround units go even further to provide increased capacity whether you're operating with incredibly high viscosity oils, extreme flow rates or need extended service intervals.

Setting the new standard.

Sampling and condition monitoring are no longer optional, they're a necessity. That's why every LF comes standard with sample ports and green to red true ΔP gages that indicate exact element condition at all times. With access to accurate system cleanliness conditions, you'll know exactly how well your filtration is performing.

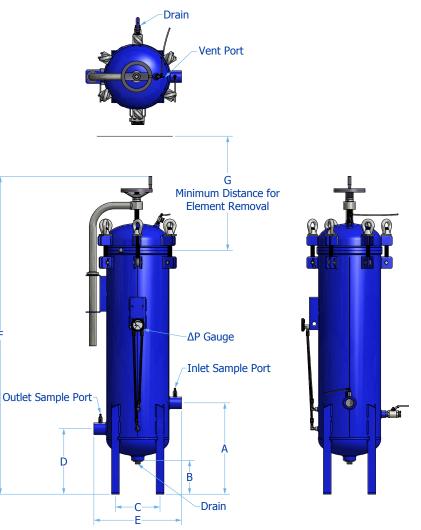
Minimize the mess.

Top loading filter housings minimize the mess from element services and changes. And with the easy open swing bolt lid design, you'll be back to filtering your fluids without having to search for all those lost parts.



Seamlessly integrated into your systems.

Multiple connection options and port customization provide the flexibility to integrate LF directly into existing re-circulating or auxiliary side loop and dispensing lines to improve fluid cleanliness and optimize existing assets. Get filtration exactly where you need it without extra expense of installing new plumbing and electrical.



LF Installation Drawings

LFM Installation Drawings

Series	Number of Elements	Port Size	Vessel Diameter	А	В	С	D	E	F	G	Weight
LFM	3	2	16.0 in	27.1 in	13.0 in	14.1 in	16.8 in	26.0 in	78.5 in	37.0 in	465.0 lb
			40.6 cm	68.8 cm	33.0 cm	35.8 cm	42.7 cm	66.0 cm	199.4 cm	94.0 cm	210.9 kg
		3	16.0 in	27.1 in	13.0 in	14.1 in	16.8 in	26.0 in	78.5 in	37.0 in	465.0 lb
			40.6 cm	68.8 cm	33.0 cm	35.8 cm	42.7 cm	66.0 cm	199.4 cm	94.0 cm	210.9 kg
		4	16.0 in	27.1 in	13.0 in	14.1 in	16.8 in	26.0 in	78.5 in	37.0 in	65.0 lb
			40.6 cm	68.8 cm	33.0 cm	35.8 cm	42.7 cm	66.0 cm	199.4 cm	94.0 cm	29.5 kg
	4	2	18.0 in	29.8 in	13.0 in	16.1 in	17.5 in	26.0 in	83.0 in	37.0 in	550.0 lb
			45.7 cm	75.7 cm	33.0 cm	40.9 cm	44.5 cm	66.0 cm	210.8 cm	94.0 cm	249.5 kg
		3	18.0 in	29.8 in	13.0 in	16.1 in	17.5 in	26.0 in	83.0 in	37.0 in	550.0 lb
			45.7 cm	75.7 cm	33.0 cm	40.9 cm	44.5 cm	66.0 cm	210.8 cm	94.0 cm	249.5 kg
		4	18.0 in	29.8 in	13.0 in	16.1 in	17.5 in	26.0 in	83.0 in	37.0 in	550.0 lb
			45.7 cm	75.7 cm	33.0 cm	40.9 cm	44.5 cm	66.0 cm	210.8 cm	94.0 cm	249.5 kg
	9	3	24.0 in	32.3 in	13.0 in	23.5 in	23.7 in	37.3 in	89.0 in	37.0 in	645.0 lb
			61.0 cm	82.0 cm	33.0 cm	59.7 cm	60.2 cm	94.7 cm	226.1 cm	94.0 cm	292.6 kg
		4	24.0 in	32.3 in	13.0 in	23.5 in	23.7 in	37.3 in	89.0 in	37.0 in	645.0 lb
			61.0 cm	82.0 cm	33.0 cm	59.7 cm	60.2 cm	94.7 cm	226.1 cm	94.0 cm	292.6 kg
		6	24.0 in	32.3 in	13.0 in	23.5 in	23.7 in	37.3 in	89.0 in	37.0 in	645.0 lb
			61.0 cm	82.0 cm	33.0 cm	59.7 cm	60.2 cm	94.7 cm	226.1 cm	94.0 cm	292.6 kg

¹Dimensions are approximations taken from base model and will vary according to options chosen and customer sizing requirements.

HY-PRO

¹⁷⁰ LF(M) Specifications

Dimensions	See Instal	llation Draw	ings on pag	e 168-169 f	for model	specific	dimensions	õ.						
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)						Ambient Temperature -4°F to 140°F (-20C to 60C)							
Operating Pressure	150 psi (1	0 bar) stanc	lard, see Sp	ecial Option	ns for add	litional pi	ressure rat	ings.						
Element Collapse Rating	HP105 HP106 150 psi (10.3 bar) 150 psi (10.3 bar)						HP107 150 psi (10	.3 bar)		HP8314 (/ 150 psi (1	,)		
Integral Bypass Setting						HP8314 (Co Integral ho 25 psid (1.7	ousing by	pass		Code 83) - nousing b .4 bard)				
Materials of Construction		teel with ind 304/316 sta		ing										
Media Description	MAG8 Dualglass, our latestG8 Dualglass highgeneration of DFE rated, highperformance mediaperformance glass media forcombined with water removall hydraulic & lubricationscrim. $\beta x_{tcl} \ge 1000$ ($\beta x \ge 200$)						W Stainless st media βx _{ια}			VTM β0.9 _[C] ≥ 1 insoluble by-produc removal r	oxidation ct and wat			
Replacement Elements	t To determine replacement elements, use corresponding codes from your assembly Element Type Code Filter Element Part Number 5 HP105L[Length Code] - [Media Selection Code][Seal Code] 6 HP106L[Length Code] - [Media Selection Code][Seal Code]													
	82 HP8314L[Length Code] – [Media Selection Code][Seal Code] HP8314L16								14L39–25WV 14L16–12MB 14L39–16ME–WS					
Fluid Compatibility	contact fa	n and miner actory for co uid (S9) com	mpatibility	with fluoro	carbon se	al option	. For phosp	phate este						
Filter Sizing ¹	filter asse	embly clean embly bypas ons with extr	s setting. Se	ee page 22	for filter a	ssembly	sizing guid	elines & ex	kamples.	For				
∆P Factors ¹	Model	Length	Units	Media vтм	05M	1M	3M	6M	10M	16M	25M	**W		
	LF	16/18	psid/gpm bard/lpm	0.0628	0.0473 0.0009	0.0463 0.0008		0.0303 0.0006	0.0271	0.0266	0.0256 0.0005	0.0046 0.0001		
		36/39	psid/gpm bard/lpm	0.0440 0.0008	0.0331 0.0006	0.0324 0.0006	0.0273 0.0005	0.0212 0.0004	0.0190 0.0003	0.0186 0.0003	0.0179	0.0032 0.0001		
	LFM3	36/39	psid/gpm bard/lpm	0.0122 0.0002	0.0092 0.0002	0.0081 0.0001	0.0055 0.0001	0.0051 0.0001	0.0045 0.0001	0.0041 0.0001	0.0035 0.0001	0.0029 0.0001		
	LFM4	36/39	psid/gpm bard/lpm	0.0091 0.0002	0.0069 0.0001	0.0067	0.0048 0.0001	0.0044 0.0001	0.004 0.0001	0.0037 0.0001	0.0032 0.0001	0.0025 0.00005		
	Model	Length	Units	Media 1A	3A	6A	10A	16A	25A					
	LF	16/18	psid/gpm bard/lpm	0.0514	0.0434	0.0336	0.0302	0.0295	0.0284					
		36/39	psid/gpm	0.0360	0.0304	0.0235	0.0211	0.0207	0.0199					
	LFM3	36/39	bard/lpm psid/gpm bard/lpm	0.0007 0.0073 0.0001	0.0006 0.0049 0.0001	0.0004 0.0046 0.0001		0.0004 0.0037 0.0001	0.0004 0.0031 0.0001					
	LFM4	36/39	psid/gpm bard/lpm	0.0060	0.0043	0.0040		0.0033	0.0029					

¹Max flow rates and △P factors assume u = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

LF(M) Part Number Builder

171

LF	Co	nnection	Element Type	Element Length	ΔP Indicator	Special O	ptions	Media	Seal	
Series	omi M3 M4 M9 M14 M22	mber of 1 eleme 3 eleme 4 eleme 9 eleme 14 elem 2 22 elem 3 38 elem	ents ents ents ients ients	200 g 600 g 800 g 1800 2800 4400	Flow Rate pm (757 lpm pm (2271 lp pm (3028 lp gpm (6814 l gpm (10,600 gpm (16,656 gpm (28,765	1) ¹ m) ¹ m) ¹ pm) ¹ i lpm) ¹ i lpm) ¹				
Connectio	A2 A3 A4 A6 A8 A10 D2 D3 D4 D6	3" ANSI 4" ANSI 6" ANSI 8" ANSI 10" ANSI DN50 D DN80 D DN100	flange – 150# flange – 150# flange – 150# flange – 150# flange – 150# G flange – 150 IN flange – PN DIN flange – PN DIN flange – P	standard standard standard # standard I16 standard I16 standard N16 standard	d		D10 F2 ¹ F3 ¹ G2 G3 N2 N3 N4	DN200 DIN DN250 DIN 2" Code 61 3" Code 61 2" G thread 3" G thread 2" NPT 3" NPT 4" NPT 2" SAE thread	flange – PN flange flange (BSPP) (BSPP)	16 standard
Element Ty	′pe 5 6 7	HP106 ·	- no bypass - 25 psid (1.7 k - 50 psid (3.4 k				82		5 psid (1.7 b	ard) integral housing bypa: ard) integral housing bypa:
Element Length	18 ³ 36 ³		gle length filte gle length filte							nousing and coreless eleme nousing and coreless eleme
∆P Indicato)r D E F G	22 psid 45 psid	visual gauge visual gauge visual gauge visual gauge				H J P X	65 psid visu	ial gauge (el gages (indus	electric switch ements 5 or 8* only) strial liquid filled)
Special Options	omi F G P9 ⁴ S1 ⁵ S2 ⁵ S3 ⁵	Filter el Spill rete Phosph 150 psi 250 psi	(10.3 bar) may ement ΔP gau ention pan with ate ester fluid (10.3 bar) max (17.2 bar) max (31.0 bar) max	ge with tattle fork guides (ir compatibility oper. pressur oper. pressur	tale followe ndustrial coat y modificatio re, 304 stainle re, 304 stainle	r needle ed steel) on ess steel ess steel		Skydrol flui U Code (ASM Automatic a 250 psi (17.2 450 psi (31.0	d compatibil /IE U code ce air bleed valv 2 bar) max op) bar) max op	
Media Selection	05M 1M 3M 6M 10M 16M	$\begin{array}{c} \beta 2.5_{\text{[C]}} \geq 1\\ \beta 5_{\text{[C]}} \geq 1\\ \beta 7_{\text{[C]}} \geq 1\\ \beta 7_{\text{[C]}} \geq 1\\ \end{array}$ $\begin{array}{c} \beta 12_{\text{[C]}} \geq \\ \beta 17_{\text{[C]}} \geq \end{array}$	S : 1000, β1 ≥ 20 : 1000, β1 ≥ 20 000, β3 ≥ 200 000, β6 ≥ 200 1000, β12 ≥ 2 1000, β17 ≥ 2 1000, β25 ≥ 2	00 1 00 3 6 1 00 2 00	$ \begin{array}{c} \mathbf{A} & \boldsymbol{\beta}2.5_{\text{cr}} \\ \mathbf{A} & \boldsymbol{\beta}5_{\text{cr}} \\ \mathbf{A} & \boldsymbol{\beta}7_{\text{cr}} \\ \mathbf{A} & \boldsymbol{\beta}7_{\text{cr}} \\ \mathbf{A} & \boldsymbol{\beta}7_{\text{cr}} \\ \mathbf{A} & \boldsymbol{\beta}7_{\text{cr}} \\ \mathbf{A} \\ \mathbf{A} & \boldsymbol{\beta}2_{\text{cr}} \\ \mathbf{A} \\$	≥ 1000, β1 000, β3 ≥ 000, β6 ≥ 1000, β12	≥ 200 200 200 $2 \geq 200$	0	Stainless 25W 25μ 40W 40μ 74W 74μ 149W 149	nominal
	VTN VTM		_[C] ≥ 1000 part	iculate, insolu	uble oxidatio	on by-prod	uct ai	nd water ren	noval media	
Seals	B V	Nitrile (Fluoroc	Buna)							

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Code 61 flange and SAE connection options include all other ports with SAE connections. When selected, no NPT connections are present in the assembly. ³Compatibility will be based on Element Type selection. For elements HP105, HP106, and HP107, use Length Code 18 or 36. Length Codes 16 and 39 only compatible with HP8314 element.

⁴When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.

⁵Lid closure hardware is plated carbon steel. ⁶When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. ⁷For elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A.

Only available on HP107 series elements. Max recommended flow rate 16 gpm (60 lpm) for HP107L36-VTM710 elements and 8 gpm (30 lpm) for HP107L18-VTM710* elements.

hyprofiltration.com/LF

LFW Wall Mounted Filter Assemblies

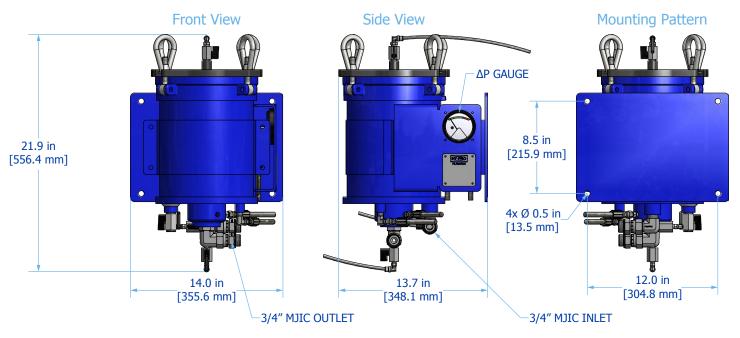
A compact, dedicated off-line contamination solution ideal for small reservoirs, gearboxes and diesel engine crankcase conditioning. Coming in at a whopping 0 ft² of floor space, the LFW is designed to get your filtration off the ground and positioned conveniently for you, whether you're polishing off that high viscosity gearbox oil or just want to add a little more protection for your critical components from heavy contaminants. And with Hy-Pro filter elements inside, the possibilities are endless for what you can do with the LFW.

Max Operating Pressure: 150 psi (10 bar) Available options up to 250 psi (17.2 bar)

C

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 0.9_{r_{Cl}} > 1000 + water$ absorption and integral element bypass valves, you get the perfect element for your application, every time.


User friendly on a whole new scale.

With everything you need together in one tiny little package, LFW service and operation couldn't be easier. From the top loading housing to the sample ports, the LFW is built to match powerful filtration with your convenience. And with the easy-open swing bolt enclosure, worrying about lost parts during service becomes a thing of the past.

On board fuel filter upgrade.

New diesel engine fuel cleanliness requirements for high pressure injectors call for higher efficiency filters, rendering your existing on-board filters too small. The LFW element is sized just right and with available water absorbing media options, you'll get clean, dry fuel and the knowledge that your diesel engines are running more efficiently than ever.

LFW Installation Drawing

LFW Specifications

Dimensions	See Installation Drawings on page 173 for model specific dimensions.							
Operating Pressure	150 psi (10 bar) maximum sta	andard. For 250 psi (17.2 ba	r) select Special option "X."					
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temperature -4°F to 140°F (-20C to 60C)					
Materials of Construction	Vessel Carbon steel with industrial c	oating	Element Bypass Valve Nickel plated steel					
Media Description		38 Dualglass, our latest G8 Dualglass high eneration of DFE rated, high performance media erformance glass media for combined with Il hydraulic & lubrication water removal scrim.		W Stainless steel wire mesh media $\beta x_{[c]} \ge 2 \ (\beta x \ge 2)$				
Replacement Elements	To determine replacem Element Type Code 6 7	ent elements, use con Filter Element Part Num HP106L10 – [Media Select HP107L10 – [Media Select	ion Code] [Seal Code]	ur assembly part number: Example HP106L10-10AB HP107L10-3MV				
Fluid Compatibility		lity with fluorocarbon seal o	ndard). For specified synthetics option. For phosphate ester (P9) c rom special options.	r				
Filter Sizing ¹	filter assembly bypass setting	s. See page 22 for filter asse	prrection should not exceed 10% or which are a should not exceed 10% or more and the second strain of the second s	es. For				

ΔP Factors ¹	Units	Media VTM	1M	3M	6M	10M	16M	25M	**W	
	psid/gpm bard/lpm	0.1700 0.0031	0.1670 0.0030	0.0980 0.0018	0.0600 0.0011	0.0390 0.0007	0.0250 0.0005	0.0200 0.0004	0.0160 0.0003	

¹Max flow rates and ΔP factors assume u = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

LFW Part Number Builder

Connection	G12 J12	Option ¾" G thread (BSPP) ¾" male JIC with 37° flare ¾" FNPT	Max Flow Rate 25 gpm (95 lpm) ¹ 25 gpm (95 lpm) ¹ 25 gpm (95 lpm) ¹		
Element Type	6 7	HP106 coreless element, 25 HP107 coreless element, 50			
ΔP Indicator	D E F G P	22 psid visual gauge + elect 22 psid visual gauge 45 psid visual gauge + elect 45 psid visual gauge 2 pressure gages (industrial	ric switch		
Special Options	F P9 ² S2 S9 ³ W X	Filter element ΔP gauge with Phosphate ester fluid comp 51" (130 cm) Mounting stan Skydrol fluid compatibility r Automatic air bleed valve 250 psi (17.2 bar) max oper	atibility modification d – ships fully assembled nodification	9	
Media Selection	05M 1M 3M 6M 10M 16M	$\begin{array}{l} \text{Dualglass} \\ \beta 0.9_{ C } \geq 1000, \ \beta 1 \geq 200 \\ \beta 2.5_{ C } \geq 1000, \ \beta 1 \geq 200 \\ \beta 5_{ C } \geq 1000, \ \beta 3 \geq 200 \\ \beta 7_{ C } \geq 1000, \ \beta 6 \geq 200 \\ \beta 12_{ C } \geq 1000, \ \beta 12 \geq 200 \\ \beta 17_{ C } \geq 1000, \ \beta 17 \geq 200 \\ \beta 22_{ C } \geq 1000, \ \beta 25 \geq 200 \end{array}$		G8 [3A 6A 10A 25A	Dualglass + water removal $\beta_{C_{[C]}} \ge 1000, \beta_3 \ge 200$ $\beta_{C_{[C]}} \ge 1000, \beta_6 \ge 200$ $\beta_{12_{[C]}} \ge 1000, \beta_{12} \ge 200$ $\beta_{22_{[C]}} \ge 1000, \beta_{25} \ge 200$
	VTN VTM2	10 ⁴ β0.9 _[C] ≥ 1000 particulate, by-product and water rer		25W 40W 74W	l <mark>less wire mesh</mark> 25μ nominal 40μ nominal 74μ nominal 149μ nominal
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stainless steel s	upport mesh		

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. ³When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. ⁴Only available on HP107 series elements. Max recommended flow rate 4 gpm (15 lpm) for HP107L10-VTM710* elements.

175

F8 Low Pressure, High Flow Filter Assembly

Ideal for high viscosity lubricating fluids, high flow hydraulic, and heavily contaminated fuel applications. Drop-in mounting interchange for common pulp and paper industry 8300/8310/8314 filter assemblies.

Max Operating Pressure: 500 psi (34.5 bar)

hyprofiltration.com/F8

Filtration starts with the filter.

Advanced DFE rated filter elements deliver lower operating ISO Codes with high efficiency particulate removal and retention efficiency. With a range of media options down to $\beta 2.5_{cl} > 1000 +$ water absorbing options, you get the perfect element for your application, every time.

Minimize the mess.

The top loading housing on F8 filter assemblies provide easy and clean access when servicing or changing the element. Accessing the element is as simple as removing the housing cover, meaning you have no heavy bowl to lift and can get back in operation more quickly than ever.

Setting the new (industry) standard.

Designed as a drop-in replacement for industry standard 8300 series filter housings, only the F8 from Hy-Pro gives you the flexibility to choose from numerous DFE rated filter arrangements. Even upgrade your existing 83** series filter elements with the HP107 series to get a new integral bypass valve with every filter.

F8 Installation Drawing F8 Mounting Bracket (Not to scale) 7.31 in [185.7 mm] Torque: Hand Ø 7.51 in [190.8 mm] tighten to seal Vent Port 16 UNF Thread (SAE-8) 7.25 in (L36/39) 47.48 in [1205.9 mm] [184.2 mm] 9.66 in [245.4 mm] 4.13 in [104.8 mm] Ø 5.66 in 5.00 in 143.7 mm] 8.00 in [127.0 mm] [203.2 mm] 45° 6.31 (L16) 25.48 in [647.3 mm] **Outlet Port** [160.1 mm] 2" / 2-1/2" 1/2-13 UNC - 2B Code 61 Flange 6.03 in ΔP Indicator Port Ø 0.38 in (Inlet Port) [15.3 mm] [9.7 mm] 0 0 7.60 in 0.51 in [193.0 mm] [13.0 mm] 1.50 in 8.25 in 2.44 in HY-PR([62.0 mm] [38.1 mm] [209.6 mm]

F8 Specifications

Dimensions	See Installa	ation Drawings	on page 17	7 for model sp	ecific dimen	sions.					
Operating Temperature	Fluid Tem 30°F to 225 (0°C to 105	5°F			-4	Ambient Temperature -4°F to 140°F (-20C to 60C)					
Operating Pressure	500 psi (34	.5 bar) max									
∆P Indicator Trigger		ar): 25 psid byp bar): 50 psid by		bypass							
Materials of Construction						owl ndustrial coated	steel				
Media Description	MAG8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{CI} \ge 1000$ ($\beta x \ge 200$)G8 Dualglass high performance media combined with water remova scrim. $\beta x_{CI} \ge 1000$ ($\beta x \ge 200$)				Si m r removal	WVTMStainless steel wire mesh media $\beta x_{ICI} \ge 2$ ($\beta x \ge 2$) $\beta 0.9_{[C]} \ge 1000$ particulate, insoluble oxidation by-product and water removal media					
Replacement Elements	To deter Element T 5 6 7		Filter HP105 HP106	Element Part L[Length Code L[Length Code	Number] – [Media Se] – [Media Se	nding codes election Code][So election Code][So election Code][So	eal Code] eal Code]	r assembly p Example HP105L36-6A HP106L16-10 HP107L36-1N	NB MV		
	32 35					Selection Code][Selection Code][HP8310L16-2 HP8310L39-3			
	8X 82 85		HP831	4L[Length Cod	e] – [Media S	Selection Code][Selection Code][Selection Code][Seal Code]	HP8314L39-2 HP8314L16-1 HP8314L39-1	2MB		
Fluid Compatibility						For polyol ester n or contact fac		ester,			
Filter Sizing ¹	filter assen	nbly bypass set	tting. See pa	ge 22 for filter	assembly si	n should not ex izing guidelines or sizing recomr	& examples				
ΔP Factors ¹	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W		
	16	psid/gpm	0.0463	0.0391	0.0303	0.0271	0.0266	0.0256	0.0046		
		bard/lpm	0.0008	0.0007	0.0006	0.0005	0.0005	0.0005	0.0001		
	36/39	psid/gpm	0.0324	0.0273	0.0212	0.0190	0.0186	0.0179	0.0032		
	50/55	psiu/gpiii	0.0006	0.0005	0.0212	0.0150	0.0100	0.017.5	0.0052		

¹Max flow rates and △P factors assume u = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

F8 P	6	irt Nun	h	oer	E	Builder 179
F8 Connection	Element		Special	Options Media	Se	eal
Connection	F32	t Option 2" Code 61 flange 2.5" Code 61 flange	300 g	c Flow Rate gpm (1,136 lpm) ¹ gpm (1,136 lpm) ¹		
Element Type	5 6 7	HP105 – no bypass HP106 – 25 psid (1.7 bard) integ HP107 – 50 psid (3.4 bard) integ			32 35 8X 82 85	HP8310 – 25 psid (1.7 bard) integral housing bypass HP8310 – 50 psid (3.4 bard) integral housing bypass HP8314 – no bypass HP8314 – 25 psid (1.7 bard) integral housing bypass HP8314 – 50 psid (3.4 bard) integral housing bypass
Element Length	16 36 ² 39 ²	L16 single length filter housing L36 single length filter housing L39 single length filter housing	and co	reless element		
ΔP Indicator	D V X	Visual with electric switch (DIN Visual/Mechanical No indicator (port plugged)	connec	tion)		
Special Options	M1	Mounting stand for base moun	t applic	cations		
Media Selection	1M 3M 6M 10M 16M	Dualglass $\beta_{2.5}_{[C]} \ge 1000, \beta_1 \ge 200$ $\beta_{5}_{[C]} \ge 1000, \beta_3 \ge 200$ $\beta_{7}_{[C]} \ge 1000, \beta_6 \ge 200$ ³ $\beta_{12}^{(C]} \ge 1000, \beta_{12} \ge 200$ $\beta_{17}^{(C]} \ge 1000, \beta_{17} \ge 200$ $\beta_{22}^{(C]} \ge 1000, \beta_{25} \ge 200$	3A 6A	Dualglass + wate $\beta 5_{[C]} \ge 1000, \beta 3 \ge \beta 7_{[C]} \ge 1000, \beta 6 \ge \beta 12_{[C]} \ge 1000, \beta 6 \ge \beta 12_{[C]} \ge 1000, \beta 1$ $\beta 22_{[C]} \ge 1000, \beta 2$	≥ 200 ≥ 200 2 ≥ 20	25Ψ 25μ nominal 40Ψ 40μ nominal 0 74Ψ
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stainless steel supp	ort me	sh		

S75-76 Low Pressure Spin-On Filter Assemblies

Hy-Pro low pressure S series filters are designed for installation on the return line to remove contaminant ingested or generated by the system. Functions include off-line filtration (kidney loop or filter cart) and some suction applications.

Ideal for automotive manufacturing and assembly machine tools, mobile applications such as waste haulers and transit, filter carts and filter panels, and power unit return line/suction.

Max Operating Pressure: 200 psi (13.8 bar)

Media matters.

DFE rated filter elements stay true to efficiency ratings and ensure the highest level of particulate capture and retention capabilities. And with media options down to $\beta 2.5_{[C]} \ge 1000$ or $\beta 5_{[C]} \ge 1000$ + water removal, you can be sure contamination stays exactly where you want it: out of your fluid.

Multiple configurations.

B12= 200

B12[c]= 1000

HY-PR

ISO 4572)

(SO 16889)

With a variety of connection types and sizes, mounting options, pressure indicators, media options and sample ports, there is a Spin-On assembly to meet the needs for almost any application.

FILTER ELEMENT

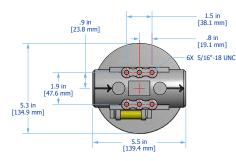
HP75L8-12AB

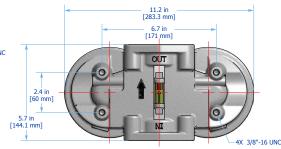
WATER REMOVAL

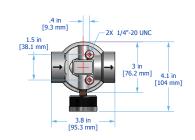
ANDERSON, IN

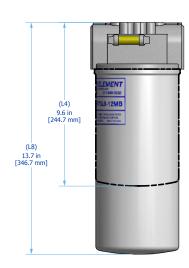
317-849-3535

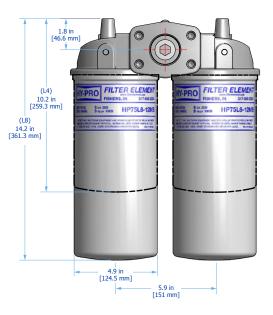
Double duty.

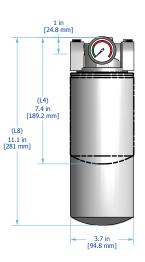

S75D assemblies pack double the punch using two Hy-Pro Spin-Ons in a parallel flow arrangement. Ideal for high flow or high viscosity applications, these assemblies offer unmatched filtration surface area in a compact size.




S75 Installation Drawing


S75D Installation Drawing


S76 Installation Drawing



S75-76 Specifications

Dimensions	See Insta	llation Draw	ings on page	e 181 for mo	del specific	dimensions.				
Operating Temperature	Fluid Ten 30°F to 22 (0°C to 10					Ambier -4°F to 1 (-20C to		ure		
Operating Pressure	200 psi (1	3.8 bar) ma	X							
ΔP Indicator Trigger	22 psi (1.	5 bar) or 44	psi (3.0 bar)							
Element Collapse	100 psid	(6.9 bard) m	ax							
Materials of Construction	Head Cast alum	ninum	Ca Sta	n amped steel		Elemen Nylon	t Bypass Va		Element End (Zinc or Tin coa carbon steel	
Media Description	of DFE rai media for	ted, high pe	est generatic rformance g ic & lubricati ĸ ≥ 200)	lass med	lia combine	gh performai d with water 00 (βx ≥ 200)	nce removal		teel wire mesh ≥ 2 (βx ≥ 2))
Replacement Elements	To dete Series S75 S75D S76	rmine rep	Fil HP HP	ter Elemen 75L[Length 75L[Length	t Part Num Code] – [Me Code] – [Me	ber dia Selection dia Selection	<mark>g codes fro</mark> Code] [Seal C Code] [Seal C Code] [Seal C	ode] ode]	assembly pa Example HP75L4-25MV HP75L8-12AB HP76L8-3MB	art number
Fluid Compatibility			ral based flui etic fluids us					and		
Fluid Compatibility Filter Sizing ¹	other spe Filter asse filter asse	ecified synth embly clean embly bypas		e fluorocark after actual e page 22 fo	oon seal opt viscosity cor r filter asser	rection shound	t factory. Ild not excee uidelines & e	d 10% of xamples. F	or	
Compatibility Filter Sizing ¹	other spe Filter asse filter asse	ecified synth embly clean embly bypas	etic fluids us element ΔP is setting. See reme cold sta	e fluorocark after actual e page 22 fo	oon seal opt viscosity cor r filter asser	rection shound	t factory. Ild not excee uidelines & e	d 10% of xamples. F	or 25M	**W
Compatibility Filter Sizing ¹	other spe Filter asse filter asse applicatio	ecified synth embly clean embly bypas ons with extr Length	etic fluids us element ΔP is setting. See reme cold sta	e fluorocark after actual e page 22 fo art conditior Media	oon seal opt viscosity cor r filter asser n contact Hy	on or contac rection shou nbly sizing g -Pro for sizin	tt factory. Ild not excee uidelines & e g recommen	d 10% of xamples. F dations.		**W 0.033 0.001
Compatibility Filter Sizing ¹	Filter asse filter asse application Series	ecified synth embly clean embly bypas ons with extr Length	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183	oon seal opt viscosity con r filter asser n contact Hy <u>3M</u> 0.280 0.005 0.155	on or contact rection shoundly sizing g Pro for sizin 6M 0.217 0.004 0.120	tt factory. Ild not excee uidelines & e g recommen <u>12M</u> 0.195 <u>0.004</u> 0.107	d 10% of xamples. F dations. 16M 0.190 0.003 0.105	25M 0.183 0.003 0.101	0.033 0.001 0.018
Compatibility Filter Sizing ¹	other specific terms of the specific terms of	ecified synth embly clean embly bypas ons with extr Length L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003	oon seal opt viscosity con r filter asser n contact Hy <u>3M</u> 0.280 0.005 0.155 0.003	on or contact rection shou nbly sizing g .Pro for sizin 0.217 0.004 0.120 0.002	tt factory. Ild not excee uidelines & e g recommen 0.195 0.004 0.107 0.002	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002	25M 0.183 0.003 0.101 0.002	0.033 0.001 0.018 0.000
Compatibility Filter Sizing ¹	Filter asse filter asse application Series	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183	oon seal opt viscosity con r filter asser n contact Hy <u>3M</u> 0.280 0.005 0.155	on or contact rection shoundly sizing g Pro for sizin 6M 0.217 0.004 0.120	tt factory. Ild not excee uidelines & e g recommen <u>12M</u> 0.195 <u>0.004</u> 0.107	d 10% of xamples. F dations. 16M 0.190 0.003 0.105	25M 0.183 0.003 0.101	0.033 0.001 0.018
Compatibility Filter Sizing ¹	other specific terms of the specific terms of terms	ecified synth embly clean embly bypas ons with extr Length L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077	on or contact rection shou nbly sizing g .Pro for sizin 0.217 0.004 0.120 0.002 0.108 0.002 0.060	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.054	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051	0.033 0.001 0.018 0.000 0.017 0.000 0.009
Compatibility Filter Sizing ¹	other specific other	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077 0.001	on or contact rection shou nbly sizing g .Pro for sizin 0.217 0.004 0.120 0.002 0.108 0.002 0.060 0.001	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.054 0.001	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.009
Compatibility Filter Sizing ¹	other specific terms of the specific terms of terms	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573	Soon seal opt viscosity corr r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077 0.001 0.484	6M 0.217 0.004 0.120 0.002 0.108 0.002 0.060 0.001 0.375	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.054 0.001 0.336	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.009 0.000 0.057
Compatibility Filter Sizing ¹	other specific other	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077 0.001	on or contact rection shou nbly sizing g .Pro for sizin 0.217 0.004 0.120 0.002 0.108 0.002 0.060 0.001	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.054 0.001	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.009
Compatibility Filter Sizing ¹	other specific terms of the specific terms of term	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077 0.001 0.484 0.009	6M 0.217 0.004 0.120 0.002 0.108 0.002 0.060 0.001 0.375 0.007	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.097 0.002 0.054 0.001 0.336 0.006	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.0057 0.001
Compatibility Filter Sizing ¹	other specific other	ecified synth embly clean embly bypas ons with extr Length L4 L4 L4 L8 L4 L4	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077 0.001 0.484 0.009 0.261 0.005	6M 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.097 0.002 0.054 0.001 0.336 0.006 0.182 0.003	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.0057 0.001 0.031 0.001
Compatibility Filter Sizing ¹	other specific terms of the specific terms of te	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media 3A	oon seal opt viscosity cor r filter asser n contact Hy <u>3M</u> 0.280 0.005 0.155 0.003 0.140 0.003 0.140 0.003 0.077 0.001 0.484 0.009 0.261 0.005 6A	6M 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004 12A	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.097 0.002 0.097 0.002 0.054 0.001 0.336 0.006 0.182 0.003 25A	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003 3C	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.0057 0.001 0.031 0.001 25C
Compatibility Filter Sizing ¹	other specific terms of the specific terms of term	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077 0.001 0.484 0.009 0.261 0.005	6M 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.097 0.002 0.054 0.001 0.336 0.006 0.182 0.003	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C 0.292	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.0057 0.001 0.031 0.001
Compatibility Filter Sizing ¹	other specific terms of the specific terms of te	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media 3A 0.311 0.006 0.172	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077 0.001 0.484 0.009 0.261 0.005 6A 0.241 0.004 0.133	6M 0.217 0.004 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004 12A 0.216 0.004 0.216 0.004 0.119	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.097 0.002 0.054 0.001 0.336 0.006 0.182 0.003 25A 0.204 0.204 0.004 0.113	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003 3C 0.448 0.008 0.247	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C 0.292 0.005 0.161	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.057 0.001 0.031 0.031 0.001 25C 0.284 0.005 0.157
Compatibility Filter Sizing ¹	other specifilter asse application Series S75 S75D S76 S75 S75 S75D	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media 3A 0.311 0.006 0.172 0.003	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077 0.001 0.484 0.009 0.261 0.005 6A 0.241 0.004 0.133 0.002	6M 0.217 0.004 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004 12A 0.216 0.004 0.216 0.004 0.119 0.002	tt factory. Ild not excee uidelines & e g recomment 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.097 0.002 0.054 0.001 0.336 0.006 0.182 0.003 25A 0.204 0.204 0.004 0.113 0.002	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003 3C 0.448 0.008 0.247 0.005	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C 0.292 0.005 0.161 0.003	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.057 0.001 0.031 0.031 0.001 25C 0.284 0.005 0.157 0.003
Compatibility Filter Sizing ¹	other specific terms of the specific terms of te	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media 3A 0.311 0.006 0.172 0.003 0.156	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.017 0.001 0.484 0.009 0.261 0.005 6A 0.241 0.004 0.133 0.002 0.121	6M 0.217 0.004 0.217 0.004 0.120 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004 12A 0.216 0.004 0.216 0.004 0.119 0.002 0.108	tt factory. Ild not excee uidelines & e g recomment 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.054 0.001 0.336 0.006 0.182 0.003 25A 0.204 0.204 0.204 0.004 0.113 0.002 0.102	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003 3C 0.448 0.008 0.247 0.005 0.224	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C 0.292 0.005 0.161 0.003 0.146	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.057 0.001 0.031 0.001 25C 0.284 0.005 0.157 0.003 0.142
Compatibility Filter Sizing ¹	other specifilter asse application Series S75 S75D S76 S75 S75 S75D	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L4 L4 L4	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media 3A 0.311 0.006 0.172 0.003 0.156 0.003	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.017 0.001 0.484 0.009 0.261 0.005 6A 0.241 0.004 0.133 0.002 0.121 0.002	6M 0.217 0.004 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004 12A 0.216 0.004 0.216 0.004 0.216 0.004 0.119 0.002 0.108 0.002	tt factory. Ild not excee uidelines & e g recomment 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.097 0.002 0.054 0.001 0.336 0.006 0.182 0.003 25A 0.204 0.204 0.204 0.204 0.204 0.113 0.002 0.102 0.002	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003 3C 0.448 0.008 0.247 0.005 0.224 0.004	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C 0.292 0.005 0.161 0.003 0.146 0.003	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.057 0.001 0.031 0.031 0.001 25C 0.284 0.005 0.157 0.003 0.142 0.003
Compatibility	other specifilter asse application Series S75 S75D S76 S75 S75 S75D	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media 3A 0.311 0.006 0.172 0.003 0.156 0.003 0.186	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.017 0.001 0.484 0.009 0.261 0.005 6A 0.241 0.004 0.133 0.002 0.121 0.002	6M 0.217 0.004 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004 12A 0.216 0.004 0.216 0.004 0.216 0.004 0.119 0.002 0.108 0.002 0.108 0.002 0.108 0.002 0.108 0.004	tt factory. Ild not excee uidelines & e g recomment 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.054 0.001 0.336 0.006 0.182 0.003 25A 0.204 0.004 0.113 0.002 0.102 0.002 0.102 0.002 0.056	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003 3C 0.448 0.008 0.247 0.005 0.224 0.004 0.124	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C 0.292 0.005 0.161 0.003 0.146 0.003 0.081	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.009 0.009 0.009 0.005 0.057 0.001 0.031 0.001 25C 0.284 0.005 0.157 0.003 0.142 0.003 0.142 0.003
Compatibility Filter Sizing ¹	other specifilter asse application Series S75 S75D S76 S75 S75 S75D	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L4 L4 L4	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media 3A 0.311 0.006 0.172 0.003 0.156 0.003 0.156 0.003 0.086 0.002	Soon seal opt viscosity cor r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.017 0.001 0.484 0.009 0.261 0.005 6A 0.241 0.004 0.133 0.002 0.121 0.002	6M 0.217 0.004 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004 12A 0.216 0.004 0.216 0.004 0.216 0.004 0.119 0.002 0.108 0.002	tt factory. Ild not excee uidelines & e g recomment 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.097 0.002 0.054 0.001 0.336 0.006 0.182 0.003 25A 0.204 0.204 0.204 0.204 0.204 0.113 0.002 0.102 0.002	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003 3C 0.448 0.008 0.247 0.005 0.224 0.004	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C 0.292 0.005 0.161 0.003 0.146 0.003	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.057 0.001 0.031 0.031 0.001 25C 0.284 0.005 0.157 0.003 0.142 0.003
Compatibility Filter Sizing ¹	other specific specif	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media 3A 0.311 0.006 0.172 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003 0.156 0.003	Soon seal opt viscosity cor r filter asser contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.140 0.003 0.140 0.003 0.077 0.001 0.484 0.009 0.261 0.005 6A 0.241 0.004 0.133 0.002 0.121 0.002 0.067 0.001 0.413 0.008	on or contact rrection shou mbly sizing g Pro for sizin 6M 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.001 0.375 0.007 0.203 0.004 12A 0.216 0.004 12A 0.216 0.004 0.119 0.002 0.108 0.002 0.108 0.001 0.370 0.001	tt factory. Ild not excee uidelines & e g recommen 12M 0.195 0.004 0.107 0.002 0.097 0.002 0.097 0.002 0.004 0.001 0.336 0.006 0.182 0.003 25A 0.204 0.004 0.113 0.002 0.102 0.002 0.002 0.002 0.004 0.113 0.002 0.004 0.113 0.002 0.004 0.113 0.002 0.004 0.102 0.004 0.182 0.004 0.182 0.003 0.004 0.182 0.004 0.005 0.004 0.005 0.005 0.004 0.005 0.005 0.004 0.005 0.005 0.004 0.005 0.005 0.004 0.005 0.005 0.005 0.004 0.005	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.005 0.001 0.329 0.006 0.178 0.003 3C 0.448 0.008 0.247 0.005 0.224 0.005 0.224 0.004 0.124 0.002 0.774 0.014	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C 0.292 0.005 0.161 0.003 0.146 0.003 0.146 0.003 0.081 0.001 0.505 0.009	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.009 0.000 0.057 0.001 0.031 0.031 0.001 25C 0.284 0.005 0.157 0.003 0.142 0.003 0.142 0.003 0.78 0.001 0.491 0.009
Compatibility Filter Sizing ¹	other specific specif	ecified synth embly clean embly bypas ons with extr Length L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8 L4 L4 L8	etic fluids us element ΔP is setting. Sea reme cold sta Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm	e fluorocark after actual e page 22 fo art condition Media 1M 0.332 0.006 0.183 0.003 0.166 0.003 0.092 0.002 0.573 0.010 0.310 0.006 Media 3A 0.311 0.006 0.172 0.003 0.156 0.003 0.156 0.003 0.086 0.002 0.533	Solution Seal opt viscosity corr r filter asser n contact Hy 3M 0.280 0.005 0.155 0.003 0.140 0.003 0.077 0.001 0.484 0.009 0.261 0.005 6A 0.241 0.004 0.133 0.002 0.121 0.002 0.121 0.002 0.121 0.002 0.121 0.002 0.141	6M 0.217 0.004 0.217 0.004 0.120 0.002 0.108 0.002 0.108 0.002 0.060 0.001 0.375 0.007 0.203 0.004 12A 0.216 0.004 0.216 0.004 0.216 0.004 0.216 0.004 0.119 0.002 0.108 0.002 0.108 0.002 0.108 0.004 0.217 0.203 0.004 0.203 0.004 0.217 0.203 0.004 0.217 0.203 0.004 0.217 0.203 0.004 0.217 0.203 0.004 0.217 0.203 0.004 0.217 0.203 0.004 0.217 0.004 0.217 0.203 0.004 0.217 0.004 0.216 0.002 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.002 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003	12 M 0.195 0.004 0.107 0.002 0.007 0.002 0.054 0.001 0.336 0.006 0.182 0.003	d 10% of xamples. F dations. 16M 0.190 0.003 0.105 0.002 0.095 0.002 0.053 0.001 0.329 0.006 0.178 0.003 3C 0.448 0.008 0.247 0.005 0.224 0.004 0.124 0.002 0.774	25M 0.183 0.003 0.101 0.002 0.092 0.002 0.051 0.001 0.317 0.006 0.171 0.003 10C 0.292 0.005 0.161 0.003 0.146 0.003 0.146 0.003 0.081 0.001 0.505	0.033 0.001 0.018 0.000 0.017 0.000 0.009 0.000 0.057 0.001 0.031 0.001 25C 0.284 0.005 0.157 0.003 0.157 0.003 0.142 0.003 0.142 0.003 0.78 0.001 0.491

¹Max flow rates and ΔP factors assume u = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

S75-76 Part Number Builder

Series C	onnection	Element Length Bypass	ΔP Indicator	Special Options	Media	Seal	
Series	Seri 75 75D 76	es HP75 Series Filter Elem HP75 Series Filter Elem HP76 Series Filter Elem	ents, double he	ad	Max Flow 50 gpm (189 100 gpm (37 30 gpm (111) lpm)¹ ′9 lpm)¹	
Connection	N20	1¼" BSP 1¼" NPT 1¼" SAE, 1%" - 12) 2" Code 61 flan; 1½" NPT 1½" SAE, 1%" - 1	-	N12 3 N16 1 S8 9	4″ BSP 4″ NPT 1″ NPT 2″ SAE, ¾″ - 16 4″ SAE, 1¹/ı6″ - 12
Element Length	4 8	4" (10 cm) nominal leng 8" (20 cm) nominal leng					
Bypass	02 03 1 2 3 X	3 psid (0.2 bard) 5 psid (0.3 bard) 15 psid (1.0 bard) 25 psid (1.7 bard) 50 psid (3.4 bard) No bypass					
∆P Indicator	DX E G V ² X	Electrical pressure swit Electrical pressure swit Visual pressure gauge Visual ΔP indicator (slid No indicator (port plug	ch 3-Wire ing green to rec				
Special Options	S	Oil sampling port on filte	er head				
Media Selection	1M 3M 6M 12M 16M	$\beta 17_{[C]} \ge 1000, \beta 17 \ge 200$ $\beta 22_{[C]} \ge 1000, \beta 25 \ge 200$	3A $\beta 5_{[C]} \ge 10$ 6A $\beta 7_{[C]} \ge 10$	+water remove 00, $β3 ≥ 200$ 00, $β6 ≥ 200$ 000, $β12 ≥ 200$ 000, $β25 ≥ 200$	3C 10C	lulose β5 _[c] ≥ 5, β3 ≥ β12 _[c] ≥ 5, β12 β25 _[c] ≥ 5, β25	≥5 40W 40µ nominal
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon ³ EPR seals + stainless st	eel support mes	sh			

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Only available with S75/S75D, Bypass Option "2" - 25 psid (1.7 bard). ³Only available with filter element HP75L8-3M

hyprofiltration.com/S75

183

S409 Medium Pressure Spin-On Filter Assemblies

Hy-Pro medium pressure S series filters are designed for installation on the return line to remove contaminant ingested or generated by the system. Functions include off-line filtration (kidney loop or filter cart) and some suction applications.

Ideal for automotive manufacturing and assembly machine tools, mobile applications such as waste haulers and transit, filter carts and filter panels, and power unit return line/suction.

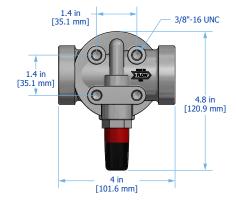
Max Operating Pressure: 500 psi (35 bar)

hyprofiltration.com/S409

Media matters.

Only Hy-Pro S409 Spin-On assemblies come with DFE rated filter elements to ensure maximum particulate capture and retention. And with media options down to $\beta 2.5_{C} \ge 1000$, you can be sure contamination stays exactly where you want it: out of your fluid.

Easily configured.


With a variety of connection types and sizes, indicator options, and included mounting provisions all in a compact package, the S409 is ready to go to work in mobile equipment, return line, hydrostatic and other applications.

Fits in all the right places.

With flow rates up to 35 gpm (132 lpm), temperature resistance to 200°F (93°C), a 2:1 safety factor, high fluid compatibility and a tight footprint, the S409 delivers the best filtration everywhere you need it. Even combine two S409 assemblies in series for incredibly low ISO Codes and water removal in a single pass.

S409 Installation Drawing

S409 Specifications

Dimensions ¹	See Installa	ation Drawings	on page 185	for model sp	ecific dimens	ions.			
Operating Temperature	Fluid Tem 30°F to 225 (0°C to 105	5°F			-4°	n bient Tempe F to 140°F 0C to 60C)	rature		
Operating Pressure	500 psi (34	.5 bar) max							
ΔP Indicator Trigger	22 psi (1.5	bar) or 44 psi (.	3.0 bar)						
Element Collapse Rating	100 psid (6	.9 bard) max							
Materials of Construction	Head Cast alumin	num	Can Stampo	ed steel	Ele Ny	ment Bypass lon	Valve	Element End Zinc or Tin co carbon steel	
Media Description	of DFE rate media for a	ss, our latest g d, high perforr all hydraulic & l ≥ 1000 (βx ≥ 2	nance glass ubrication	media cor	ass high perfo nbined with w _□ ≥ 1000 (βx ≥	vater removal		s steel wire mes $x_{ICI} \ge 2 (\beta x \ge 2)$	h
Replacement Elements	Filter Elem	mine replac Tent Part Num [Media Selection	nber		Exa	nding codes ample 409L9-10MB	from you	r assembly p	oart number:
Fluid Compatibility		and mineral ba ified synthetic f				phosphate este ontact factory.	er, and		
Filter Sizing ¹	filter assem	nbly bypass set	ting. See pag	ge 22 for filter	r assembly siz	should not exo ing guidelines sizing recomm	& examples	. For	
ΔP Factors ¹	Length	Units	Media 1M	ЗM	6M	10M	25M	25A	**W
	L9	psid/gpm bard/lpm	0.2961 0.0054	0.2499 0.0046	0.1937 0.0035	0.1737 0.0032	0.1699 0.0031	0.1869 0.0034	0.0306 0.0006

S409 Part Number Builder

S409				_		
C	onnection	Element Length Bypass L	ΔP Indicator ΔP Indicator Location	ΔP Indicator Media Setting	Seal	
Connectio	N12		Max Flow Ra 25 gpm (95 lpn 35 gpm (132 lp 25 gpm (95 lpn 35 gpm (132 lp	n) ¹ im) ¹ n) ¹		
Element Length	9 X	9" (23 cm) nominal length No element	n filter element			
Bypass	2 3 X	25 psid (1.7 bard) bypass 50 psid (3.4 bard) bypass No bypass				
ΔP Indicate	Dr C D V X	dc electrical signal wire (r Visual with electric switch Visual, Mechanical No indicator (port plugge	n (DIN Connection)	ion)		
ΔP Indicate Location	Dr L R T X	Left side Right side Top mount No indicator (port plugge	ed)			
∆P Indicate Setting	Or 2 3 X	ΔP 22 psi (1.5 bar) indicat ΔP 44 psi (3.0 bar) indicat No indicator (port plugge	tor setting			
Media Selection	1M	$\begin{array}{l} \textbf{Dualglass} \\ \beta 2.5_{[C]} \geq 1000, \ \beta 1 \geq 200 \\ \beta 5_{[C]} \geq 1000, \ \beta 3 \geq 200 \\ \beta 7_{[C]} \geq 1000, \ \beta 6 \geq 200 \\ \beta 12_{[C]} \geq 1000, \ \beta 12 \geq 200 \\ \beta 17_{[C]} \geq 1000, \ \beta 17 \geq 200 \\ \beta 22_{[C]} \geq 1000, \ \beta 25 \geq 200 \end{array}$	3A $\beta 5_{cc} \ge 10$ 6A $\beta 7_{cc} \ge 10$ 10A $\beta 12_{cc} \ge 1$		Stainless wire r 25W 25μ nomin 74W 74μ nomin 149W 149μ nomi	al al
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon 5 EPR seals + stainless stee	el support mesh			

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection.

hyprofiltration.com/S409

Medium Pressure Filter Assemblies

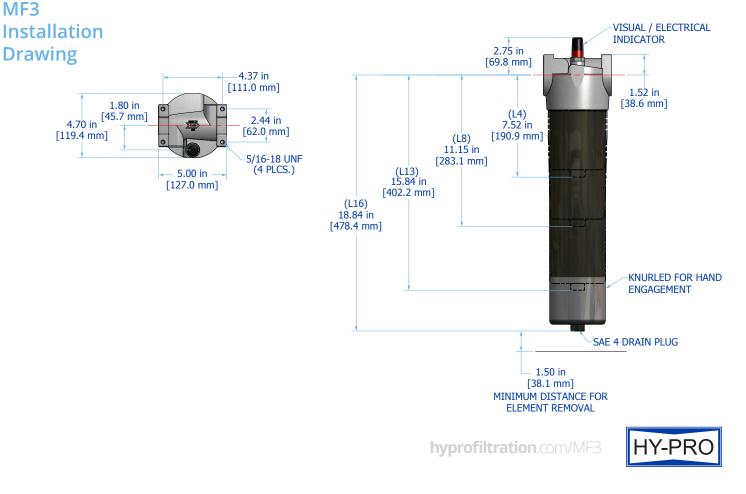
Ideal for mobile equipment return line applications as an alternative to spin-ons, on-board fuel and dispensing and hydrostatic charge circuits.

Max Operating Pressure: 1,200 psi (83 bar)

Filtration starts with the filter.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 2.5_{[C]} \ge 1000$, + water absorption, you get the perfect element for your application, every time.

HF3 Compatible Design.


Port to port dimension, mounting pattern, and element design meet HF3 automotive specification. And with standard SAE drain ports, lightweight aluminum bowls, and knurled texture on the bowls provide ease for element servicing, you get all of the convenience you want with the compatibility you need.

189

Inherently versatile.

Unique internal flow paths providing a low clean pressure drop and element sizes from 4-16", the MF3 can be used in a variety of applications including Hydrostatic charge circuit for mobile equipment, CAT 5-Star service center, and return line alternative to spin-on assembles.

MF3 Specifications

Dimensions	See Installa	ation Drawing	s on page 189	9 for model s	pecific dime	nsions.			
Operating Temperature	Fluid Tem 30°F to 225 (0°C to 105	5°F				Ambient Tem -4°F to 140°F (-20C to 60C)	perature		
Operating Pressure	1200 psi (8	33 bar) max							
Burst Pressure	3000 psi (2	206.8 bar) ma:	X						
∆P Indicator Trigger			5 psid bypass 0 psid bypass		ass				
Element Collapse Rating	290 psid (2	20 bard)							
Materials of Construction	Head Cast alumi	inum	Bowl L4/L8: Cast al L13/L16: Anod extruded alum	lized impact		Element Bypa Nylon	ss Valve	Element E Zinc or Tin carbon stee	coated
Media Description	of DFE rate media for a	ass, our latest ed, high perfo all hydraulic 8 ₁ ≥ 1000 (βx ≥	rmance glass & lubrication	media co	ass high per mbined with _α ≥ 1000 (βx	water removal		s steel wire me x _[C] ≥ 2 (βx ≥ 2)	sh
Replacement Elements	Filter Elen	nent Part Nu				Example HP60L16-6MB	from you	r assembly	part numbe
Fluid Compatibility						r, phosphate es contact factory			
Filter Sizing ¹	filter assen	mbly bypass s	etting. See pa	ge 22 for filte	r assembly s	on should not ex sizing guidelines or sizing recom	& examples		
ΔP Factors ¹	Length	Units	Media 1M	3M	6M	12M	16M	25M	**W
∆P Factors ¹	Length	Units psid/gpm		3M 0.357	6M 0.268	12M 0.186	16M 0.171	25M 0.149	**W 0.027
∆P Factors ¹	L4	psid/gpm bard/lpm	1M 0.459 0.008	0.357 0.007	0.268 0.005	0.186 0.003	0.171 0.003	0.149 0.003	0.027
∆P Factors ¹		psid/gpm bard/lpm psid/gpm	1M 0.459 0.008 0.324	0.357 0.007 0.252	0.268 0.005 0.206	0.186 0.003 0.156	0.171 0.003 0.151	0.149 0.003 0.143	0.027
∆P Factors ¹	L4 L8	psid/gpm bard/lpm psid/gpm bard/lpm	1M 0.459 0.008 0.324 0.006	0.357 0.007 0.252 0.005	0.268 0.005 0.206 0.004	0.186 0.003 0.156 0.003	0.171 0.003 0.151 0.003	0.149 0.003 0.143 0.003	0.027 0.000 0.026 0.000
∆P Factors ¹	L4	psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm	1M 0.459 0.008 0.324 0.006 0.237	0.357 0.007 0.252 0.005 0.200	0.268 0.005 0.206 0.004 0.155	0.186 0.003 0.156 0.003 0.139	0.171 0.003 0.151 0.003 0.136	0.149 0.003 0.143 0.003 0.131	0.027 0.000 0.026 0.000 0.024
∆P Factors ¹	L4 L8	psid/gpm bard/lpm psid/gpm bard/lpm	1M 0.459 0.008 0.324 0.006	0.357 0.007 0.252 0.005	0.268 0.005 0.206 0.004	0.186 0.003 0.156 0.003	0.171 0.003 0.151 0.003	0.149 0.003 0.143 0.003	0.027 0.000 0.026 0.000

1Max flow rates and ΔP factors assume u = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

MF3 Part Number Builder

Connection		t <mark>Option</mark> 1.25" G thread (BSPP) 1.25" NPT 1.5" NPT 1.25" SAE 1.5" SAE	75 75 100 75	ax Flow Rate gpm (284 lpm) ¹ gpm (284 lpm) ¹ 0 gpm (379 lpm) ¹ gpm (284 lpm) ¹ 0 gpm (379 lpm) ¹		
Element Length	4 8 13 16	4" (10 cm) nominal length filt 8" (20 cm) nominal length filt 13" (33 cm) nominal length fil 16" (41 cm) nominal length fil	er elen ter ele	nent and housing ment and housing		
Bypass	1 3 X	25 psid (1.7 bard) bypass 50 psid (3.4 bard) bypass No bypass				
ΔP Indicator	D V X	Visual with electric switch (DI Visual/Mechanical No indicator (port plugged)	N Conr	nection)		
Media Selection	1M 3M 6M 12M 16M		3A 6A 12/		Stainless wire mesh25W25μ nominal40W40μ nominal74W74μ nominal149W149μ nominal	
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon ² EPR seals + stainless steel suj	oport r	nesh		

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Only available with ΔP Indicator option "X" selected.

191

PF2 High Pressure In-Line Filter Assembly

Ideal for a variety of applications including mobile applications, paper and saw mills, power generation, general industrial machine tools, and automotive manufacturing. With HF2 compatible port-to-port dimension, mounting pattern, and element design to meet the automotive manufacturing standard.

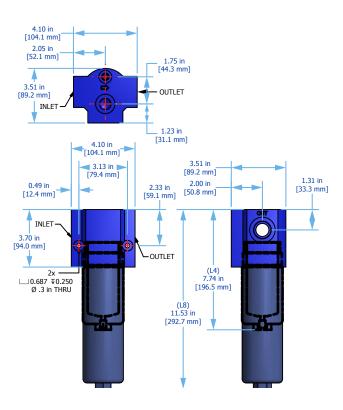
Max Operating Pressure: 4000 psi (275 bar)

hyprofiltration.com/PF2

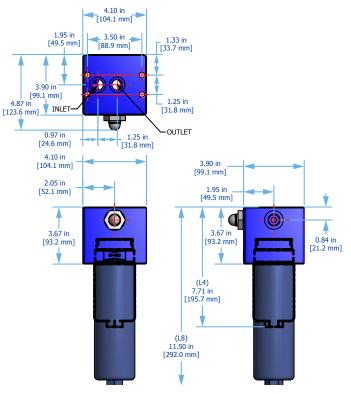
Filtration starts with the filter.

G8 Dualglass and PE glass elements are DFE rated to assure performance even when exposed to the toughest hydraulic systems and provide unmatched particulate capture and retention to remove contamination from your hydraulic and lube oils, for good.

Small size, huge results.


The compact size of PF2 filter assemblies make them the perfect addition directly upstream of your control valves and other sensitive components even in the tightest of spaces. And with two different mounting options to choose from, the incredible versatility of the PF2 makes it ideal for all of your high pressure filter applications.

Works under pressure.


Applications for the PF2 include mobile, general industrial machine tools, paper mills, sawmills, and speed control circuits for power generation systems. So whether you're operating waste haulers, cement mixers, fire trucks, cranes, or CNC routers, you can be sure the PF2 will protect your critical components even when the pressure is on.

In-Line Mount Installation Drawing

Manifold Mount Installation Drawing

PF2 Specifications

DimensionsSee Installation Drawings on page 193 for model specific dimensions.Operating TemperatureFluid Temperature 30% to 225% (0°C to 105°C)Ambient Temperature -4% to 140% (-20C to 60C)Operating Pressure4000 psi (275 bar) max PressureAmbient Temperature -4% to 140% (-20C to 60C)Image: ConstructionFlow Fatigue Rating2000 psi (137 bar) Rating2000 psi (137 bar) RatingImage: ConstructionImage: ConstructionBurst Pressure12,000 psi (827 bar) max PressurePressureImage: ConstructionImage: ConstructionImage	
Operating Temperature30°F to 225°F (o°C to 105°C)-4°F to 140°F (-20C to 60C)Operating Pressure4000 psi (275 bar) maxPressure2000 psi (275 bar) maxFlow Fatigue Rating2000 psi (137 bar)Burst Pressure12,000 psi (827 bar) maxPressure12,000 psi (827 bar) maxPressure50 psid (3.4 bard) for bypass. 102 psid (7 bard) for non-bypass. Thermal lockout indicator functions at or above 68°F (20°C), manual reset on visual indicators with exception to "V" option (auto reset standard).Element Collapse RatingNormal Collapse 290 psid (20 bard)Materials of ConstructionHead Anodized aluminum (grade T6061) Bowl drain #4 SAE standardMedia DescriptionM GB Dualglass, our latest generation of DFE rated, high all hydraulic & lubricationMedia all hydraulic & lubrication all hydraulic & lubrication all hydraulic & lubrication (grade 7000) EXECUTIONMedia all hydraulic & lubrication all hydraulic & lubricationMaterials of all hydraulic & lubrication all hydraulic & lubricationMedia all hydraulic & lubricationMedia all hydraulic & lubricationMedia all hydraulic & lubricationMedia all hydraulic & lubricationMaterials of generation of DFE rated, high all hydraulic & lubricationMedia all hydraulic & lubricationMedia all hydraulic & lubricationMaterials of generation of DFE rated, high all hydraulic & lubricationMaterials of generation of DFE rated, high all hydraulic & lubricationMedia all h	
PressureFlow Fatigue Rating2000 psi (137 bar)Rating12,000 psi (827 bar) maxBurst Pressure12,000 psi (827 bar) maxAP Indicator Trigger50 psid (3.4 bard) for bypass. 102 psid (7 bard) for non-bypass. Thermal lockout indicator functions at or above 68°F (20°C), manual reset on visual indicators with exception to "V" option (auto reset standard).Element Collapse RatingNormal Collapse 290 psid (20 bard)Materials of ConstructionHead Anodized aluminum (grade T6061)Media DescriptionM G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubricationBowl An addized strement G8 Dualglass, nur latest generation of DFE rated, high performance glass media for all hydraulic & lubricationSF Collapse SettingW Stainless steel fiber media $\beta x_{rg} \ge 1000 (\beta x \ge 200)$	
Rating 12,000 psi (827 bar) max Pressure 12,000 psi (827 bar) max Pressure 50 psid (3.4 bard) for bypass. 102 psid (7 bard) for non-bypass. Thermal lockout indicator functions at or above 68°F (20°C), manual reset on visual indicators with exception to "V" option (auto reset standard). Element Collapse Rating Normal Collapse 290 psid (20 bard) High Collapse 3000 psid (206 bard) Integral Bypass Setting 60 psid (4.1 bard) Materials of Construction Head Anodized aluminum (grade T6061) Bowl Anodized aluminum (grade T6061) Bowl drain #4 SAE standard Element Bypass Valve Nickel plated/Stainless steel indicator stee Element En Zinc or Tin c carbon stee Media Description M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication A Sr ₀ ≥ 1000 (βx ≥ 200) SF purplication W Stainless steel fiber media βx _(g) ≥ 1000 (βx ≥ 200)	
Pressure So psid (3.4 bard) for bypass. 102 psid (7 bard) for non-bypass. Thermal lockout indicator functions at or above 68°F (20°C), manual reset on visual indicators with exception to "V" option (auto reset standard). Element Collapse Rating Normal Collapse 290 psid (20 bard) High Collapse 3000 psid (206 bard) Integral Bypass Setting 60 psid (4.1 bard) Materials of Construction Head Anodized aluminum (grade T6061) Bowl drain #4 SAE standard) Element Bypass Valve Nickel plated/Stainless steel fiber generation of DFE rated, high performance glass media for all hydraulic & lubrication all hydraulic & lubrication all hydraulic & lubrication A G8 Duaglass high performance glass media for all hydraulic & lubrication all hydraulic & lubrication all hydraulic & lubrication all hydraulic & lubrication A SF W Stainless steel fiber media Game and grame	
Internal lockout indicator indicators with exception to "V" option (auto reset standard).High Collapse 3000 psid (206 bard)Element Collapse RatingNormal Collapse 290 psid (20 bard)High Collapse 3000 psid (206 bard)Element 3000 psid (206 bard)Integral Bypass Setting60 psid (4.1 bard)Bowl Anodized aluminum (grade T6061) Bowl drain #4 SAE standardElement Bypass Valve Nickel plated/Stainless steel and steel performance glass media for all hydraulic & lubricationWMedia DescriptionM G8 Dualglass, our latest generation of DFE rated, high all hydraulic & lubricationBowl Anodized aluminum (grade T60061) Bowl drain #4 SAE standardSF pynafuzz stainless steel fiber media $\beta_{tcl} \ge 1000 (\beta_X \ge 200)$ W	
Licinitial Collapse Rating290 psid (20 bard) $3000 psid (206 bard)$ Integral Bypass Setting $60 psid (4.1 bard)$ $60 psid (4.1 bard)$ $Element Bypass Valve$ Naterials of ConstructionHead Anodized aluminum (grade T6061) $Bowl$ $Element Bypass Valve$ Nickel plated/Stainless steel $Element EnZinc or Tin ccarbon steelMediaDescriptionMG8 Dualglass, our latestgeneration of DFE rated, highperformance glass media forall hydraulic & lubricationAASr_ci ≥ 1000 (\beta x \ge 200)SFDynafuzz stainless steel fibermedia \beta x_{rci} \ge 1000 (\beta x \ge 200)WStainless steelmedia \beta x_{rci} \ge 1000 (\beta x \ge 200)$	
Bypass SettingMaterials of ConstructionHead Anodized aluminum (grade T6061)Bowl Anodized aluminum (grade T6061)Element Bypass Valve Nickel plated/Stainless steelElement En Zinc or Tin c carbon steelMedia DescriptionM G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubricationA G8 Dualglass high performance glass media for all hydraulic & lubricationA G8 Dualglass high performance glass media for all hydraulic & lubricationBowl Anodized aluminum (grade T6061) Bowl drain #4 SAE standardSF Dynafuzz stainless steel fiber media $\beta x_{rcl} \ge 1000$ ($\beta x \ge 200$)W Stainless steel media $\beta x_{rcl} \ge 1000$ ($\beta x \ge 200$)	
Anodized aluminum (grade T6061)Anodized aluminum (grade T6061)Anodized aluminum (grade T6061)Nickel plated/Stainless steelZinc or Tin c carbon steeMedia DescriptionM G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubricationA G8 Dualglass high performance steelSF Ponafuzz stainless steel fiber media $\beta x_{tcl} \ge 1000$ ($\beta x \ge 200$)W Stainless steel	
G8 Dualglass, our latestG8 Dualglass highDynafuzz stainless steel fiberStainless steelDescriptionG8 Dualglass, our latestG8 Dualglass highDynafuzz stainless steel fiberStainless steelperformance glass media for all hydraulic & lubricationfor $\beta x_{rcl} \ge 1000 (\beta x \ge 200)$ media $\beta x_{rcl} \ge 1000 (\beta x \ge 200)$ media $\beta x_{rcl} \ge 1000 (\beta x \ge 200)$	
fluids. $\beta x_{[c]} \ge 1000 \ (\beta x \ge 200)$	
ReplacementTo determine replacement elements, use corresponding codes from your assembly ElementsFilter Element Part Number HP2[Collapse Rating Code]L[Length Code] - [Media Selection Code] [Seal Code]Example HP20L4-12N	
Fluid Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetic fluids use fluorocarbon seal option or contact factory.	
Filter Sizing ¹ Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See page 22 for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations.	
	W** M
	85 0.213 22 0.004
	18 0.111
bard/lpm 0.020 N/A 0.017 0.013 0.012 N/A 0.012 C	11 0.002
	.64 0.228
	.64 0.228 23 0.004 47 0.116

1Max flow rates and ΔP factors assume υ = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

PF2 Part Number Builder

PF2	Collapse Length Bypass Indicator Media Seal
Connection	Port Option Max Flow Rate G12 ¹ ¾" G thread (BSPP) 20 gpm (76 lpm) ² M12 ¾" Manifold top mount 20 gpm (76 lpm) ² S12 ¹ ¾" SAE 20 gpm (76 lpm) ²
Collapse Rating	 0³ 290 psid (20 bard) normal collapse element 1 3000 psid (206 bard) high collapse element
Element Length	 4" (10 cm) nominal length filter element and housing 8" (20 cm) nominal length filter element and housing
Bypass	4 60 psid (4.1 bard) bypassX No bypass
ΔP Indicator	DXElectrical switch only (DIN connection)TVisual/mechanical with thermal lockoutVVisual/mechanicalXNo indicator (port plugged)
Media Selection	G8 DualglassG8 Dualglass + water removal1M $\beta_{2.5}_{[C]} \ge 1000, \beta_1 \ge 200$ 3A $\beta_{5}_{[C]} \ge 1000, \beta_3 \ge 200$ 2M ⁴ $\beta_{5}_{[C]} \ge 1000, \beta_3 \ge 200$ 6A $\beta_{7}_{[C]} \ge 1000, \beta_6 \ge 200$ 3M ⁵ $\beta_{5}_{[C]} \ge 1000, \beta_3 \ge 200$ 12A $\beta_{12}_{[C]} \ge 1000, \beta_{12} \ge 200$ 6M $\beta_{7}_{[C]} \ge 1000, \beta_{12} \ge 200$ 25A $\beta_{22}_{[C]} \ge 1000, \beta_{25} \ge 200$ 15M ⁴ $\beta_{12}_{[C]} \ge 1000, \beta_{17} \ge 200$ 16M $\beta_{17}_{[C]} \ge 1000, \beta_{17} \ge 200$ 25M $\beta_{22}_{[C]} \ge 1000, \beta_{25} \ge 200$ 25A
	Dynafuzz stainless fiberStainless wire mesh 3SF $\beta_{5_{[C]}} \ge 1000, \beta_3 \ge 200$ 25W 25μ nominal 10SF $\beta_{12_{[C]}} \ge 1000, \beta_{12} \ge 200$ 40W 40μ nominal 74W 74μ nominal 149W 149μ nominal
Seals	 B Nitrile (Buna) V Fluorocarbon E-WS EPR seals + stainless steel support mesh

¹Vent connection standard on G12 and S12 models - #4 SAE.

²Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ³When chosen, must be paired with Bypass option "4" ⁴Compatible only with High Collapse Rating option "1." ⁵Not available on High Collapse Rating option "1."

195

PF4 High Pressure Base Mounted Filter Assemblies

Hy-Pro PF4 pressure filters are designed for protecting sensitive components in hydraulic circuits. Install the series upstream of specific components or directly after the pressure pump to minimize risk of failure and costly system downtime.

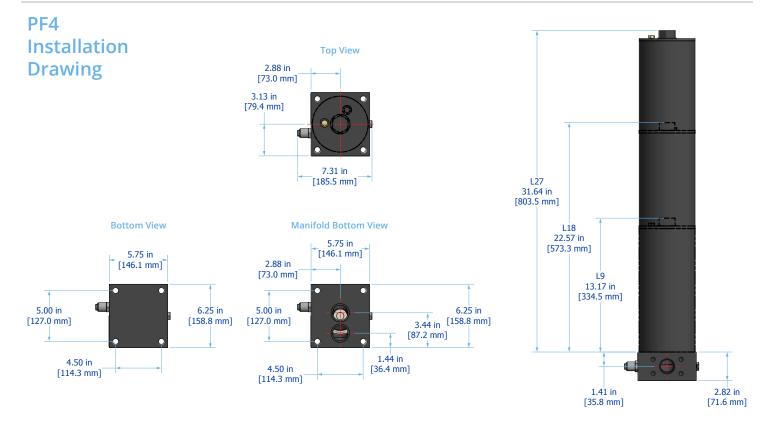
Ideal for components that are sensitive to particulate contamination, such as the servo valve, and require clean pressurized fluid for reliable operation.

HY-PRO

hyprofiltration.com/PF4

Filtration starts with the filter.

G8 Dualglass elements are DFE rated to assure performance even when exposed to the toughest hydraulic systems and provide unmatched particulate capture and retention to protect servo valves and ensure you're operating at maximum efficiency.


Minimize the mess.

The top loading housing on PF4 filter assemblies provide easy and clean access when servicing or changing the element. Accessing the element is as simple as removing the housing cover, meaning you have no heavy bowl to lift and can get back in operation quicker than ever.

HF4 Compatible Design.

The PF4 series is engineered to meet mill and plant target cleanliness codes and required ISO4406:1999 cleanliness standards to meet hydraulic component manufacturers warranties. Available with HF4 compatible port to port dimension, mounting pattern, and element design to meet the automotive manufacturing standard.

PF4 Specifications

Dimensions	See Installation Dra	awings on I	bage 197 fo	or model spe	ecific dim	ensions.				
Operating Temperature	Fluid Temperatur 30°F to 225°F (0°C to 105°C)	e				Ambient Te -4°F to 140°F (-20C to 60C)				
Operating Pressure	5,000 psi (310 bar)	max								
Flow Fatigue Rating	3,500 psi (238 bar)									
Burst Pressure	13,500 psi (931 bar	-)								
ΔP Indicator Trigger	35 psid (2.4 bard) b All indicators rever					o-reset).				
Element Collapse Rating	HPK 290 psid (20.0 barc	1)	HPK3 3000 psid	l (206.8 barc	1)	HPK5 5000 psid (34	14.7 bard)	НРК 150 р	C osid (10.3 ba	ard)
Integral Bypass Setting	50 psid (3.4 bard)									
Materials of Construction	Head/Lid Ductile iron			Bowl Seamless s	teel tubir	Ŋg	Eler Nylo	ment Bypa on	ss Valve	
Media Description	M G8 Dualglass, our l of DFE rated, high media for all hydra fluids. $\beta x_{[C]} \ge 1000$	performan ulic & lubri	ce glass		bined wit	erformance th water remo 3x ≥ 200)		nless steel v dia $\beta x_{[c]} \ge 2$		
Replacement Elements	To determine r Filter Element Pau HP[Collapse Rating	rt Number					Exa	your asse mple (L18–16MV	embly par	t numbe
Fluid Compatibility	Petroleum and mir other specified syn									
Filter Sizing ¹	Filter assembly clea filter assembly byp applications with e	ass setting	. See page	22 for filter	assembly	/ sizing guidel	ines & exam	ples. For		
∆P Factors ¹	Collapse	Length	Units	Media 1M	3M	6M	12M	16M	25M	**W
	PF4K**, PF4K1**, PF4KC**	L9	psid/gpm bard/lpm	0.2374 0.0043	0.2003		0.1392 0.0025	0.1362	0.1312 0.0024	0.0236 0.0004
		L18	psid/gpm	0.1167	0.0985	0.0764	0.0685	0.0670	0.0645	0.0116
		L27	bard/lpm psid/gpm		0.0018		0.0012	0.0012	0.0012	0.0002
			bard/lpm		0.0034		0.0454	0.00444	0.0428	0.00077
	PF4K3** (non-	L9	psid/gpm	0.3376	0.2849	0.2208	0.1980	0.1937	0.1866	0.0336
	1 I I N		bard/lpm	0.0061	0.0052	0.0040	0.0036	0.0035	0.0034	0.0006
	bypass housing)									
	bypass housing)	L18	psid/gpm		0.1393		0.0968	0.0947	0.0912	0.0164
	bypass housing)	L18 L27		0.0030	0.1393 0.0025 0.0924	0.0020	0.0968 0.0018 0.0642	0.0947 0.0017 0.0628	0.0912 0.0017 0.0605	0.0164 0.0003 0.0109

1Max flow rates and ΔP factors assume υ = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

PF4 Part Number Builder

PF4	Col	llapse Length Byp.	ass Indic	cator Medi	a Seal		
Connection	C24 F24 M24	t Option 1.5" Code 62 flange 1.5" Code 61 flange Manifold mount (see inst 1.5" SAE	allation detail)	Max Flow Rat 115 gpm (435 lpr 115 gpm (435 lpr 115 gpm (435 lpr 115 gpm (435 lpr	n) ¹ n) ¹	
Collapse Rating	K K3 K5 KC	290 psid (20.0 bard), HF4 3000 psid (206.8 bard), H 5000 psid (344.7 bard), H 150 psid (10.3 bard), Cord	F4 element co F4 element co	onfiguration onfiguration			
Element Length	9 18 27	9" (23 cm) nominal length 18" (46 cm) nominal leng 27" (69 cm) nominal leng	h filter eleme	ent and housing			
Bypass	3 X	50 psid (3.4 bard) bypass No bypass					
∆P Indicator	D V X	Visual with electric switch Visual/Mechanical No indicator (port plugge		ition)			
Media Selection	1M 3M 6M 12M	$\begin{array}{l} \textbf{Dualglass} \\ \beta_2.5_{[C]} \geq 1000, \ \beta_1 \geq 200 \\ \beta_5^{[C]} \geq 1000, \ \beta_3 \geq 200 \\ \beta_7^{[C]} \geq 1000, \ \beta_6 \geq 200 \\ \beta_{12}^{[C]} \geq 1000, \ \beta_12 \geq 200 \\ \beta_{17}^{[C]} \geq 1000, \ \beta_{17} \geq 200 \\ \beta_{17}^{[C]} \geq 1000, \ \beta_{17} \geq 200 \\ \beta_{22}^{[C]} \geq 1000, \ \beta_{25} \geq 200 \end{array}$	G8 D 3A 6A 12A 25A	Dualglass + was $\beta_{CC} \ge 1000, \beta$ $\beta_{CC} \ge 1000, \beta$ $\beta_{CC} \ge 1000, \beta$ $\beta_{CC} \ge 1000, \beta$ $\beta_{CC} \ge 1000, \beta_{CC} \ge 1000, \beta_{CC} \ge 1000, \beta_{CC}$	$3 \ge 200$ $5 \ge 200$ $312 \ge 200$	Stainless wire mesh 25W 25μ nominal 40W 40μ nominal 74W 74μ nominal 149W 149μ nominal	
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon 5 EPR seals + stainless stee	l support me:	sh			

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection.

hyprofiltration.com/PF4

199

PFH High Pressure In-Line Filter Assemblies

Hy-Pro's PFH pressure filters are designed to protect sensitive components in hydraulic circuits. Install the series upstream of specific components or directly after the pressure pump in smaller systems to minimize risk of failure and costly system downtime.

Ideal for use on a power unit pump discharge filter or pilot filter directly in front of valves and actuators.

Max Operating Pressure: 9137 psi (630 bar)

Dynamic Filter Efficiency

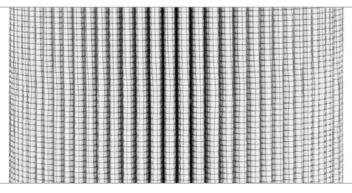
Hydraulic applications see dynamic flow changes on a regular basis. Dynamic Filter Efficiency testing takes the ISO 4409 Multi-Pass testing even further with variable flow shifts to ensure your filter elements stand up to real world conditions and maintain the highest capture and retention rates in the industry.

Industrial duty.

Standard mounting holes for optional brackets, stainless steel ID tags, a variety of indicator options, and standard drain ports make the PFH the ideal choice for heavy duty hydraulic filtration.

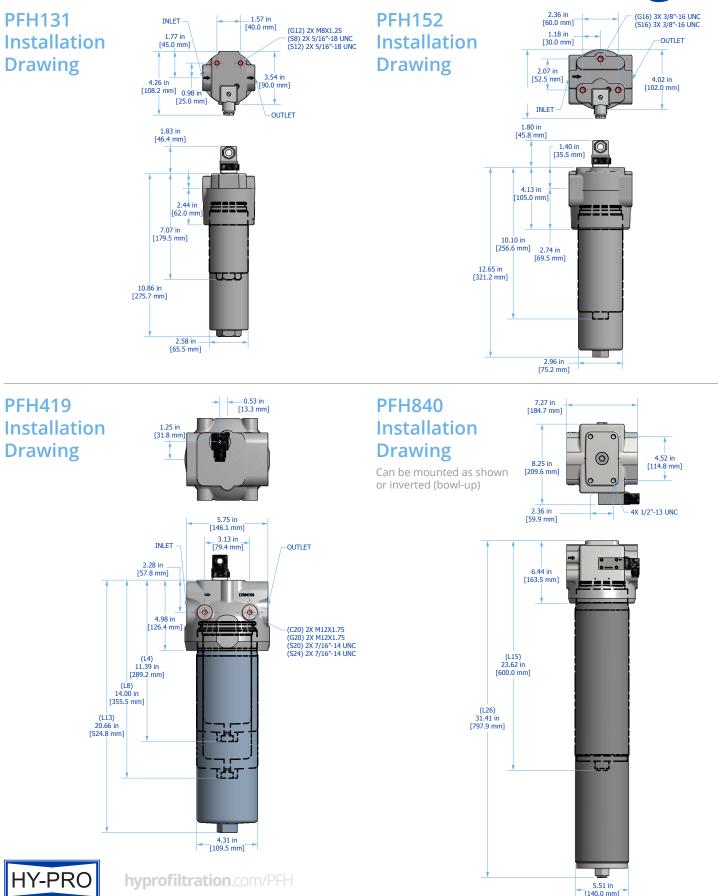
Unique applications.

With available nickel plating of internal components and coarse wire mesh media options, the PFH series is perfect for applications like drill rig mud pump and gearbox applications where water contamination wrecks traditional filtration. Even include Hy-Pro's G8 Dualglass media with Water Removal to take out dirt and water and leave your equipment operating more efficiently than ever.


Extend the life of your element.

Unique internal flow paths provide low resistance to flow, resulting in a low housing pressure drop. Hy-Pro's advanced filter media delivers lower operating ISO Codes to eliminate internally generated contamination meaning your filter will have an incredibly long service life to protect your sensitive components better than ever.

Minimize the mess.


The PFH series is available with Hy-Pro's coreless filter elements that can be readily disposed of through crushing or incineration. The circumferential o-ring bowl seal eliminates leaking and weeping. For easy cleaning and service, PFH bowls comes standard with drain plugs.

The ideal choice for hydraulics.

Use the PFH as the main high pressure filter(s) in a hydraulic system or upstream of sensitive components as a pilot filter to protect your valves and actuators. The PFH series are engineered to provide lower operating ISO Codes than what is required for compliance with hydraulic component manufacturers warranties.

PFH Installation Drawings

PFH Sizing Guide

Filter Sizing¹ Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See page 22 for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations.

∆P Factors ¹	Series	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W
PFF	PFH131	L4	psid/gpm bard/lpm	2.4121 0.0439	2.0355 0.0371	1.5775 0.0287	1.4147 0.0258	1.3842 0.0252	1.3333 0.0243	0.2400 0.0044
		L8	psid/gpm bard/lpm	1.1674 0.0213	0.9852 0.0179	0.7635 0.0139	0.6847 0.0125	0.6699 0.0122	0.6453 0.0118	0.1162 0.0021
	PFH152	L4	psid/gpm bard/lpm	0.9438 0.0172	0.7964 0.0145	0.6172 0.0112	0.5535 0.0101	0.5416 0.0099	0.5217 0.0095	0.0939 0.0017
		L8	psid/gpm bard/lpm	0.6769 0.0123	0.5712 0.0104	0.4427 0.0081	0.3970 0.0072	0.3884 0.0071	0.3742 0.0068	0.0673 0.0012
	PFH419	L4	psid/gpm bard/lpm	0.4735 0.0086	0.3996 0.0073	0.3097 0.0056	0.2777 0.0051	0.2717 0.0049	0.2617 0.0048	0.0471 0.0009
		L8	psid/gpm bard/lpm	0.3415 0.0062	0.2882 0.0052	0.2234 0.0041	0.2003 0.0036	0.1960 0.0036	0.1888 0.003 4	0.0340 0.0006
		L13	psid/gpm bard/lpm	0.2364 0.0043	0.1995 0.0036	0.1546 0.0028	0.1387 0.0025	0.1357 0.0025	0.1307 0.0024	0.0235 0.0004
	PFH840	L15	psid/gpm bard/lpm	0.1613 0.0029	0.1361 0.0025	0.1055 0.0019	0.0946 0.0017	0.0926 0.0017	0.0892 0.0016	0.0160 0.0003
		L26	psid/gpm bard/lpm	0.1054 0.0019	0.0889 0.0016	0.0689 0.0013	0.0618 0.0011	0.0605 0.0011	0.0582 0.0011	0.0105 0.0002

¹Max flow rates and ΔP factors assume u = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

PFH Specifications

Dimensions	See installation Drawings on	page 202 for model specific dim		
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temperature -4°F to 140°F (-20C to 60C)	
Operating Pressure	PFH131 5800 psi (400 bar) min. 2 x 10 ⁶ pressure cycles Nominal pressure according to DIN 24550	PFH152 5800 psi (400 bar) min. 2 x 10 ⁶ pressure cycles Nominal pressure according to DIN 24550	PFH419 ¹ 5220 psi (360 bar) min. 2 x 10 ⁶ pressure cycles Nominal pressure according to DIN 24550	PFH840 5800 psi (400 bar) min. 2 x 10 ⁶ pressure cycles Nominal pressure according to DIN 24550
Flow Fatigue Rating	PFH131 9137 (630 bar) min. 2 x 10 ⁴ pressure cycles Quasi-static operating pressure	PFH152 9137 (630 bar) min. 2 x 10 ⁴ pressure cycles Quasi-static operating pressure	PFH419 9137 (630 bar) min. 2 x 10 ⁴ pressure cycles Quasi-static operating pressure	PFH840 9137 (630 bar) min. 2 x 10⁴ pressure cycles Quasi-static operating pressure
ΔP Indicator Trigger	73 psid (5 bard)			
Element Collapse Rating	HP***N 450 psid (31.0 bard) max	HP***H 3000 psid (206.8 ba	HP***(rd) max 250 psi	: d (17.2 bard) max
Integral Bypass Setting	PFH131 102 psid (7 bard)	PFH152 102 psid (7 bard)	PFH419 102 psid (7 bard)	PFH840 87 psid (6.0 bard) – Integra element bypass
Materials of Construction	Head Cast steel	Bowl with Drain Plug PFH131-419: Cold forged steel PFH840: DOM tubing	Interior Coating Phosphate	Exterior Coating Industrial powder coating
Media Description	M G8 Dualglass, our latest gene of DFE rated, high performan media for all hydraulic & lub fluids. $\beta x_{[c]} \ge 1000$ ($\beta x \ge 200$)	nce glass media combined w rication scrim. $\beta x_{rc} \ge 1000$ (ith water removal 👘 media (s steel wire mesh $βx_{[C]} ≥ 2 (βx ≥ 2)$
Replacement Elements	Series Code Filter Element 131 HP131[Collar 152 HP152[Collar 419 HP419[Collar	nent elements, use the sel ent Part Number pse Code] L [Length Code] – [Med pse Code] L [Length Code] – [Med pse Code] L [Length Code] – [Med pse Code] L [Length Code] – [Med	ia Selection Code][Seal Code] ia Selection Code][Seal Code] ia Selection Code][Seal Code]	Ilowing page below: Example HP131HL4-10MB HP152NL8-16MV HP419CL13-3AB HP840NL15-25MB
Fluid Compatibility	Biodegradable and mineral	based fluids. For high water base	ed or specified synthetics cons	sult factory.

1PFH419 C20 Connection Option rated for 6000 psi (414 bar) max operating pressure. M20 Connection Option rated for 7520 psi (518 bar) max operating pressure.

PFH Part Number Builder

205

PFH	Connection Collapse Length Bypass ΔP Indicator Special Options Media Seal
Series	131 Nominal flow rate up to 15 gpm (57 lpm) ¹ 152 Nominal flow rate up to 35 gpm (132 lpm) ¹ 419 Nominal flow rate up to 95 gpm (360 lpm) ¹ 840 Nominal flow rate up to 150 gpm (568 lpm) ¹
Connection	PFH131 PFH152 PFH419 PFH840 G12 ¾" G thread (BSPP) G16 1" G thread (BSPP) C20 1¼" Code 62 flange (6000 psi) C32 2" Code 62 flange (6000 S8 ½" SAE S16 1" SAE G20 1¼" G thread (BSPP) C32 2" Code 62 flange (6000 S12 ¾" SAE S16 1" SAE G20 1¼" G thread (BSPP) C32 2" Code 62 flange (6000 S20 1¼" SAE S20 1¼" SAE S20 1¼" SAE
Collapse Rating	 C² 250 psid (17.2 bard) – Coreless element with integral bypass (includes post assembly for element support) H 3000 psid (206.8 bard) – High collapse element with no housing bypass N³ 450 psid (31.2 bard) – Core-in element with housing bypass
Length	PFH131 PFH152 PFH419 PFH840 4 4" (10 cm) nominal 4 4" (10 cm) nominal 4 4" (10 cm) nominal 5 15" (38 cm) nominal 8 8" (20 cm) nominal 8 8" (20 cm) nominal 8 8" (20 cm) nominal 6 26" (66 cm) nominal 13 13" (33 cm) nominal
Bypass	74102 psid (7 bard) bypassX5No bypass
ΔP Indicator	DXElectrical switch only (DIN connection)LVisual with electric switch (DIN connection) + LED indicatorVVisual/MechanicalXNo indicator (port plugged)
Special Options	N ⁶ Nickel plated internal components for high water applications
Media Selection	$ \begin{array}{ c c c c c c } \hline G8 \ Dualglass \\ \hline IM & \beta 2.5_{tC} \geq 1000, \ \beta 1 \geq 200 \\ \hline 3M & \beta 5_{tC} \geq 1000, \ \beta 3 \geq 200 \\ \hline 6M & \beta 7_{tC} \geq 1000, \ \beta 6 \geq 200 \\ \hline 6M & \beta 7_{tC} \geq 1000, \ \beta 6 \geq 200 \\ \hline 10M & \beta 12_{tC} \geq 1000, \ \beta 12 \geq 200 \\ \hline 10M & \beta 12_{tC} \geq 1000, \ \beta 12 \geq 200 \\ \hline 10M & \beta 12_{tC} \geq 1000, \ \beta 17 \geq 200 \\ \hline 25M & \beta 22_{tC} \geq 1000, \ \beta 25 \geq 200 \\ \hline \end{array} \qquad \begin{array}{c} G8 \ Dualglass + water removal \\ \hline 3A & \beta 5_{tC} \geq 1000, \ \beta 3 \geq 200 \\ \hline 6A & \beta 7_{tC} \geq 1000, \ \beta 6 \geq 200 \\ \hline 10A & \beta 12_{tC} \geq 1000, \ \beta 12 \geq 200 \\ \hline 25A & \beta 22_{tC} \geq 1000, \ \beta 25 \geq 200 \\ \hline \end{array} \qquad \begin{array}{c} Stainless wire mesh \\ \hline 40W & 40\mu nominal \\ \hline 40W & 74\mu nominal \\ \hline 149\mu nominal \\ \hline 149\mu nominal \\ \hline \end{array}$
Seals	BNitrile (Buna)V7FluorocarbonE-WS7EPR seals + stainless steel support mesh

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, fr
 ²Available on PFH419 and PFH840 only.
 ³PFH840 includes integral element bypass and does not include a bypass in the housing.
 ⁴PFH840 bypass setting is 87 psid (6.0 bard).
 ⁵Only available when paired with "H" high collapse element.
 ⁶When selected, automatically adds nickel plating to filter element. For replacement elements, add"-N" to end of filter element part number. Not available on PFH840 series.
 ⁷Not available with PFH840 series housings.

PFHB High Pressure Full Flow Bi-Directional Filter Assemblies

Hy-Pro's PFHB high pressure filter assemblies are designed for applications where flow direction changes and fluid must be filtered with full flow in both directions. Protect both components and clean fluid that typically does not return to the reservoir.

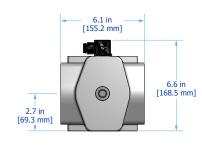
Ideal for steel mills, board plants, scrap yards, and concrete mixers.

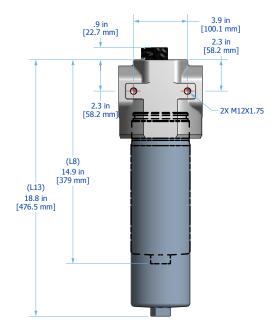
Max Operating Pressure: 7252 psi (500 bar)

hyprofiltration.com/PFHB

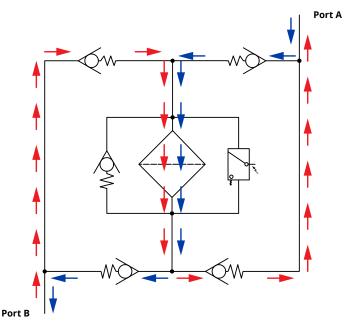
Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities to combat the dynamic flow changes in all hydraulic applications. With media options down to $\beta 2.5_{CI} \ge 1000$, + water absorption, you get the perfect element for your application, every time.


Two directions, one result.


With unique flow paths and internal check valves, PFHB assemblies allow hydraulic fluids to travel in both directions while maintaining the highest of filter efficiencies. Whether installed at the end of a remotely located cylinder or small cylinders where used fluid is not able to return to the tank for standard filtration, the PFHB captures contaminants in both flow directions where others can't.

Always ready.


Perfect for use in hydrostatic loop circuits and any system where flow can change direction, the PFHB is ready for capturing particles in both directions with absolute efficiency - automatically.

PFHB Installation Drawing

Bi-Directional Schematic

hyprofiltration.com/PFHB

207

PFHB Specifications

Dimensions ¹	See Installation Drawing on page 207 for model specific dimensions.										
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)	Ambient Temper -4°F to 140°F (-20C to 60C)	ature								
Operating Pressure	7252 psi (500 bar)										
ΔP Indicator Trigger	73 psid (5 bard)										
Element Collapse Rating	HP419NL 450 psid (31.0 bard) max		HP419HL 3000 psid (206.8 bard) max	HP419CL 250 psid (17.2 bard) max							
Materials of Construction	Head Cast steel	Bowl ¹ Extruded st	Interior Coating teel Phosphate	Exterior Coating Industrial powder coating							
Media Description	M G8 Dualglass, our latest genera of DFE rated, high performanc media for all hydraulic & lubric fluids. $\beta x_{CI} \ge 1000 (\beta x \ge 200)$	e glass – m	A G8 Dualglass high performance media combined with water removal scrim. $\beta x_{tcl} \ge 1000$ (βx ≥ 200)	W Stainless steel wire mesh media $\beta x_{[c]} \ge 2 (\beta x \ge 2)$							
Replacement Elements	To determine replacement elements, use the selected codes from the following page below Filter Element Part Number Example HP419[Collapse Code] L [Length Code] – [Media Selection Code][Seal Code] HP419NL13-25MB										
Fluid Compatibility	Biodegradable and mineral ba	Biodegradable and mineral based fluids. For high water based or specified synthetics, consult factory.									
Filter Sizing ²	filter assembly bypass setting.	See page 22	ual viscosity correction should not exc 2 for filter assembly sizing guidelines & tion contact Hy-Pro for sizing recomm	& examples. For							

ΔP Factors ²	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W
	L8	psid/gpm bard/lpm		0.2882 0.0052	0.2234 0.0041	0.2003 0.0036	0.1960 0.0036	0.1888 0.0034	0.0340 0.0006
	L13	psid/gpm bard/lpm		0.1995 0.0036	0.1546 0.0028	0.1387 0.0025	0.1357 0.0025	0.1307 0.0024	0.0235 0.0004

¹Bowl comes standard with drain plug. ²Max flow rates and ΔP factors assume u = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

PFH	В	Part N	Ju	mber E	Builder	209
PFHB	ection	Collapse Length Bypa	ISS II	ndicator Media Seal		
Connection	C20	t Option 1¼" Code 62 flange 1½" Code 62 flange	95 gpr	Flow Rate n (360 lpm)' n (360 lpm)'		
Collapse	C H N		collapse e	element with no housing bypass	post assembly for element support) ¹	
Element Length	8 13	8" (20 cm) nominal length filt 13" (33 cm) nominal length fi				
Bypass	7 X	102 psid (7 bard) bypass No bypass				
ΔP Indicator	DX L V X	Electrical switch only (DIN co Visual with electric switch (Dl Visual/Mechanical No indicator (port plugged)		ion) + LED indicator		
Media Selection	1M 3M 6M 10M 16M	$\begin{array}{l} \text{Dualglass} \\ \beta_{2.5}_{\text{IC}} \geq 1000, \ \beta_{1} \geq 200 \\ \beta_{5}_{\text{IC}} \geq 1000, \ \beta_{3} \geq 200 \\ \beta_{7}_{\text{IC}} \geq 1000, \ \beta_{6} \geq 200 \\ \beta_{12}_{\text{IC}} \geq 1000, \ \beta_{12} \geq 200 \\ \beta_{17}_{\text{IC}} \geq 1000, \ \beta_{17} \geq 200 \\ \beta_{22}_{\text{IC}} \geq 1000, \ \beta_{25} \geq 200 \end{array}$	3A 6A 10A	ualglass + water removal $\beta_{C_{[C]}} \ge 1000, \beta_3 \ge 200$ $\beta_{T_{[C]}} \ge 1000, \beta_6 \ge 200$ $\beta_{12_{[C]}} \ge 1000, \beta_{12} \ge 200$ $\beta_{22_{[C]}} \ge 1000, \beta_{25} \ge 200$	Stainless wire mesh 25W 25μ nominal 40W 40μ nominal 74W 74μ nominal 149W 149μ nominal	
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stainless steel su	oport mes	h		

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection.

DLF(M) Low Pressure High Flow Duplex Filter Assembly

Designed to maintain continuous filtration, even throughout element servicing, the DLF series filter assemblies provide two high efficiency, high capacity filter housings coupled by a user-friendly 6-way, 3 position valve that completely seals the system from the atmosphere. Use the DLF(M) to remove particulate and water from a variety of fluids and maximize your uptime.

Ideal for systems where filters must be serviced without system interruption such as hydraulic, gearbox, pulp and paper, rolling mill oil, bulk oil handling, and high flow return-line filtration.

Max Operating Pressure: 150 psi (10 bar) Available options up to 450 psi (31 bar)

hyprofiltration.com/DLF

One assembly, twice the filtration.

DLF assemblies combine two powerful LF housings to deliver lower ISO Codes faster than ever. With a turn of the lever, you'll introduce a new element to your fluid while simultaneously valving the used element out of service to easily change and replace, all while your system continues operating at full capacity.

Built for industrial use.

Constructed from heavy duty carbon steel (standard) or the optional 304 or 316 stainless steel, the DLF filter housings are designed to excel in even the toughest industrial conditions. Multiround units go even further to provide increased capacity whether you're operating with incredibly high viscosity oils or extreme flow rates.

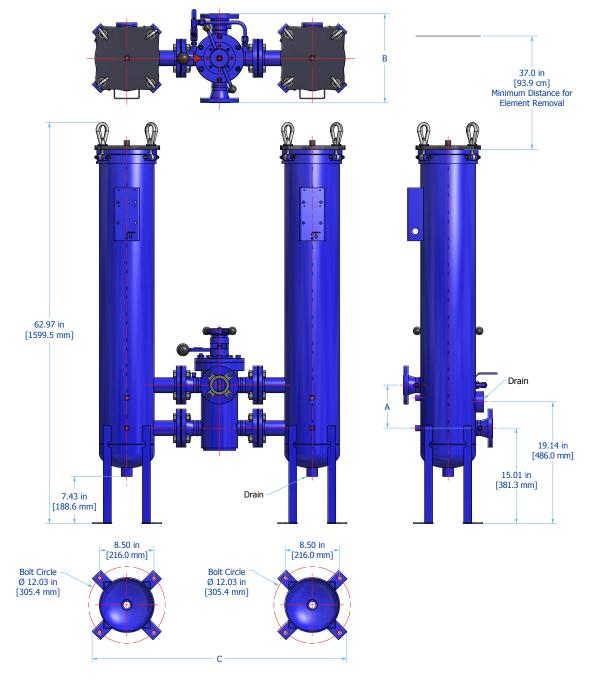
Filtration starts with the filter.

The oversized coreless filter element in every DLF delivers lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass so with every filter change you get a new bypass along with peace of mind.

integrate the DLF directly in-line on your systems and get the most impact from your filtration directly where you need it.

Inherently safe.

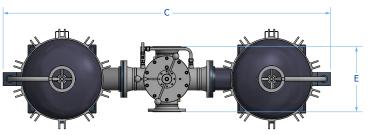
The true 6-way valve with internal pressure equalization and fill line allows for seamless transition of flow from one housing to the other. As the valve is repositioned, oil from the in-service housing is redistributed to the out-of-service housing to purge air before it can move downstream – meaning you maintain fluid levels, preserve system control and prevent cavitation of your components, all while ensuring your fluid stays remarkably clean.

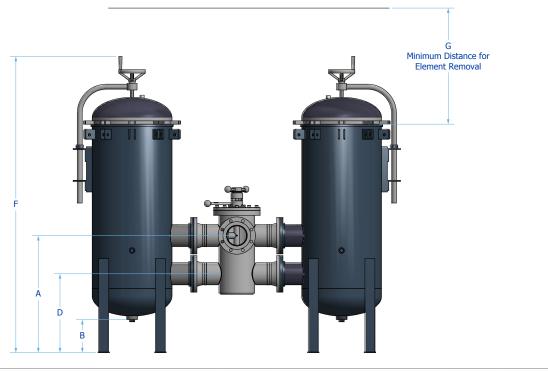

Clean oil has never been easier.

Designed to combine incredible capacity and low maintenance, the oversized housing with secure swivel bolts allow for effortless element changes with all the parts kept right where they need to be. The top loading housing and post/nipple system provide incredible ease of use and make element installation and maintenance easier than ever.

Seamlessly integrated into your systems. Multiple connection options provide you with the ability to

DLF Installation Drawing


Series	Port Size	Vessel Diameter	А	В	С	Weight
DLF	2	8.0 in	11.7 in	14.0 in	41.4 in	389.0 lb
		20.3 cm	29.7 cm	35.6 cm	105.2 cm	176.4 kg
	3	8.0 in	11.7 in	14.0 in	43.4 in	451.0 lb
		20.3 cm	29.7 cm	35.6 cm	110.2 cm	204.6 kg
	4	8.0 in	15.2 in	17.0 in	50.7 in	544.0 lb
		20.3 cm	38.6 cm	43.2 cm	128.8 cm	246.8 kg


¹Dimensions are approximations taken from base model and will vary according to options chosen and customer sizing requirements.

T

DLFM Installation Drawing

Series Number Port В (D Е F G Vessel А Weight of Size Diameter Elements

1190.0 lb 539.8 kg 1251.0 lb 567.4 kg
1251.0 lb
567.4 kg
1344.0 lb
609.6 kg
1360.0 lb
616.9 kg
1421.0 lb
644.6 kg
1514.0 lb
686.7 kg
1811.0 lb
821.5 kg
1904.0 lb
863.6 kg
2081.0 lb
943.9 kg
1 6 1 8 1 8 2

¹Dimensions are approximations taken from base model and will vary according to options chosen and customer sizing requirements. Contact factory to request model specific drawings or for any models not listed above.

DLF(M) Specifications

Dimensions	See Install	lation Drawin	g on pages 21	2-213 for n	nodel specifi	c dimensions							
Operating Temperature	Fluid Tem 30°F to 22 (0°C to 10			Ambient Temperature -4°F to 140°F (-20C to 60C)									
Operating Pressure	150 psi (10.3 bar) standard. See special options for additional pressure ratings.												
Element Collapse Rating	HP105 150 psi (10	0.3 bar)	HP1 (150	06 osi (10.3 bai	r)	HP107 150 psi (10	.3 bar)		HP8314 (All Codes) 150 psi (10.3 bar)				
Integral Element Bypass Setting	HP106 25 psid (1	.7 bard)	HP1 50 ps)7 sid (3.4 bard	(b	HP8314 (C 25 psid (1.7			314 (Code 83) iid (3.4 bard))			
Materials of Construction	Housing Industrial	coated carbo	on steel										
Media Description	MAWG8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{rcl} \ge 1000$ ($\beta x \ge 200$)G8 Dualglass high performance media combined with water removal scrim. $\beta x_{rcl} \ge 1000$ ($\beta x \ge 200$)W												
Replacement Elements	To determine replacement elements, use corresponding codes from your assembly part numberElement Type CodeFilter Element Part NumberExample5HP105L[Length Code] - [Media Selection Code][Seal Code]HP105L36-6AB6HP106L[Length Code] - [Media Selection Code][Seal Code]HP106L18-10MV7HP107L[Length Code] - [Media Selection Code][Seal Code]HP107L36-25MB												
	8XHP8314L[Length Code] – [Media Selection Code][Seal Code]HP8314L39-25WV82HP8314L[Length Code] – [Media Selection Code][Seal Code]HP8314L16-12MB85HP8314L[Length Code] – [Media Selection Code][Seal Code]HP8314L39-16ME-WS												
Fluid Compatibility	contact fa	ctory for com	l based fluids, patibility with lity select fluid	n fluorocarb	on seal optic	on. For phosp							
Filter Sizing ¹	filter asse	mbly bypass	lement ΔP aft setting. See p me cold start	age 22 for f	ilter assembl	y sizing guide	elines & exar	mples. For					
ΔP Factors ¹	Model	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W			
	DLF	L36/L39	psid/gpm	0.0324	0.0273	0.0212	0.0190	0.0186	0.0179	0.0032			
			bard/lpm	0.0009	0.0008	0.0007	0.0007	0.0007	0.0007	0.0006			
	DLFM3	L36/L39	psid/gpm	0.0081	0.0055	0.0051	0.0045	0.0041	0.0035	0.0029			
			bard/lpm	0.00015	0.0001	0.00009	0.00008	0.00007	0.00006	0.00005			
	DLFM4	L36/L39	psid/gpm	0.0067	0.0048	0.0044	0.004	0.0037	0.0032	0.0025			
			bard/lpm	0.00012	0.00009	0.00008	0.00007	0.00007	0.00006	0.00005			
		L36/L39	psid/gpm	0.0034	0.0025	0.0022	0.002	0.0019	0.0016	0.0013			
	DLFM9	L30/L39	psid/8pill	0.000	0.0025	0.0022	0.002	0.0015	0.0010	0.0015			

¹Max flow rates and ΔP factors assume υ = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

DLF(M) Part Number Builder 215

DLF							_]_						
Series	Poi	rt nfiguration	Connection	Element Type	ΔP Indicat	or	Specia	l Options		Media	Seal				
Series	omi M3 M4 M9 M14	t 1 eleme 3 eleme 4 eleme 9 eleme 14 elem	Deer of Elements Max Flow Rate element 200 gpm (757 lpm) ¹ 8 elements 600 gpm (2271 lpm) ¹ 4 elements 800 gpm (3028 lpm) ¹ 9 elements 1800 gpm (6814 lpm) ¹ 4 elements 2800 gpm (10,600 lpm) ¹ 22 elements 4400 gpm (16,656 lpm) ¹												
Port Configuration	K O S	Opposi	pposite side porting (180°), same center line pposite side porting (180°), in-line (different center line) me side porting (standard)												
Connections	A15 A2 A3 A4 A6 A8 D15 D2 D3	2" ANSI 3" ANSI 4" ANSI 6" ANSI 8" ANSI DN40 D DN50 D	flange flange flange					D6 D8 F15	[[] 2	DN100 DIN fl DN150 DIN fl DN200 DIN fl 1.5" Code 61 2" Code 61 fla 3" Code 61 fla	ange ange flange ange				
Element Type	5 6 7	HP106 ·	– no bypass – 25 psid (1.7 – 50 psid (3.4					8X 82 85	ŀ	HP8314 – no HP8314 – 25 HP8314 – 50	psid (1.7				
∆P Indicator	D E F G	22 psid 45 psid	visual gauge visual gauge visual gauge visual gauge					H J P X	6	55 psid visua 55 psid visua 2 pressure ga None (ports p	l gauge (ages (ind	elem ustria	ents 5 o	r 8* only)	
Special Options	omi F G P9 ² S1 ³ S2 ³	Filter el Spill rete Phosph 150 psi	(10.3 bar) ma ement ΔP gau ention pan with ate ester fluic (10.3 bar) max (17.2 bar) max	ige with tatt fork guides compatibil oper. pressu	e tale foll industrial ity modifi ure, 304 st	ower coatec catior ainles	needle d steel) n s steel		2 	450 psi (31.0 k Skydrol fluid J Code (ASMI Automatic aiı 250 psi (17.2 k 450 psi (31.0 k	compatil E U code o r bleed va par) max	bility certifi alve oper.	modifica ed) pressure	ation e, carbon s	teel
Media Selection	1M 3M 6M 10M 16M	$\beta 5_{cc} \ge 1$ $\beta 7_{cc} \ge 1$ $5 \beta 12_{cc} \ge$ $\beta 17_{cc} \ge$	S : 1000, $β1 \ge 2'$ 000, $β3 \ge 200$ 000, $β6 \ge 200$ 1000, $β12 \ge 2$ 1000, $β17 \ge 2$ 1000, $β25 \ge 2$	00) 200 200		$c_{c_{1}} \ge 1(c_{c_{1}} \ge 1(c_{c_{1}} \ge 1(c_{c_{1}} \ge 1)))$)00, β3)00, β6 000, β	≥ 200 ≥ 200 $12 \geq 200$	00	oval	Stainles 25W 25 40W 40 74W 74 149W 14	5μ no)μ no 4μ no	minal minal minal	h	
Seals	B V	Nitrile (Fluoroc													

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. ³Lid closure hardware is plated carbon steel.

⁴When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. ⁵For elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A.

DFN Low Pressure Duplex Filter Assembly

Designed to maintain continuous filtration, even throughout element servicing, the DFN series filter assemblies provide a compact and user-friendly 4-way, 2 position housing completely sealed from the atmosphere. Remove particulate and water from a variety of fluids including hydrogen seal, oil, turbine lube oil, bearing lube oil, and FD-ID-PA fan lube.

Ideal for systems where filters must be serviced without system interruption such as hydraulic, gearbox, wind turbine, boiler feed pump, mechanical/ electro hydraulic control, and servo systems.

Max Operating Pressure: 888 psi (61.2 bar)

hyprofiltration.com/DFN

Two positions, one result.

DFN housings provide unmatched in-line filtration with incredible ease of use. With a squeeze of the trigger and turn of the wrist, you'll introduce a new element to your fluid while simultaneously valving the used element out of service to easily change and replace, all while your system continues operating at full capacity.

All duplexes are not created equal.

Air in any lube system can quickly cause failure and force you to take your system down for maintenance. DFN assemblies utilize internal equalization and external vent ports to automatically push oil into and purge air out from the unused housing without any added effort.

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 2.5_{\text{[C]}} \ge 1000$ + water absorption, you get the perfect element for your application, every time.

⊢ 3.5 in [87.9 mm]

⊷ 4.3 in -[108.9 mm]

6.8 in [172.0 mm] 11.1 in [283.0 mm] **DFN19 DFN39** - 4.0 in -[100.4 mm] 8.2 in [207.1 mm] Installation Installation Drawing 4X M8X1 25 3.0 in Drawing 3.0 in [76.4 mm] [76.4 mm] 4X M12X1.25 0 2.1 in [52.6 mm] 2.4 in [62.0 mm] 0.7 in [17.7 mm] 0.8 in [20.1 mm] 6.7 in [170.2 mm] 5.8 in [147.2 mm] o 2.2 in [56.0 mm] 1.9 in [49.0 mm] 3.9 in [98.8 mm] 3.2 in [81.4 mm] ÷ (L6) 11.1 in [283.1 mm] (L4) 7.7 in [194.7 mm] (L6) (10)10.1 in [255.3 mm] 15.0 in [380.0 mm] (L10) 13.6 in [346.4 mm] (L15) 20.7 in [526.9 mm] 2.6 in [66.3 mm] – 5.5 in -[139.7 mm]

DFN Specifications

D' '										
Dimensions	See Installation Drawing on page 217 for model specific dimensions.									
Operating Temperature	30°F to 22	Fluid Temperature 30°F to 225°F (0°C to 105°C)				Ambient Temperature -4°F to 140°F (-20C to 60C)				
Operating Pressure	DFN19 888 psi (61	DFN19 888 psi (61.2 bar) max				DFN39 350 psi (24.1 bar) max				
∆P Indicator Trigger	32 psid (2.	21 bard)								
Element Collapse Rating	Normal C 450 psid (3	Normal Collapse (Collapse Option N) 450 psid (31.0 bard)				High Collap 3000 psid (2		e Option H)	
Materials of Construction	Head Aluminum	1	Bowl Alumin	ium		Interior Co Anodized	ating			
Media Description	MAWG8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{ICI} \ge 1000$ ($\beta x \ge 200$)G8 Dualglass high performance media combined with water removal scrim. $\beta x_{ICI} \ge 1000$ ($\beta x \ge 200$)Stainless steel wire mesh media $\beta x_{ICI} \ge 2$ ($\beta x \ge 2$)									
Replacement Elements	To deter Series Coo 19 39	de Filter E HP19[0	lacement ele Element Part N Collapse Code] L Collapse Code] L	lumber [Length Code	e] – [Media s	Selection Cod	le][Seal Code	Exai	embly par nple 9HL6-10MB 9NL6-6AV	t number
	Biodegrad	lable and mi	neral based flui	ds. For high	wator baso	d of coocifier				
Fluid Compatibility	0.11				water baser	a of specified	a synthetics,	consult fac	tory.	
	Filter asse	mbly bypass	element ΔP after setting. See pag eme cold start co	ge 22 for filte	sity correct er assembly	ion should n sizing guide	ot exceed 1 lines & exar	0% of nples. For	tory.	
Compatibility Filter Sizing ¹	Filter asse	mbly bypass	setting. See pag	ge 22 for filte	sity correct er assembly	ion should n sizing guide	ot exceed 1 lines & exar	0% of nples. For	25M	**W
Compatibility	Filter asse filter asser application	bly bypass ns with extre Length	setting. See pag eme cold start o	ge 22 for filte ondition con Media	sity correct er assembly tact Hy-Pro	ion should n sizing guide for sizing re	ot exceed 1 lines & exar commendat	0% of nples. For ions.		**W 0.4700 0.0086
Compatibility	Filter asse filter asser application Model	mbly bypass ns with extre Length	setting. See pageme cold start content of the set of th	ge 22 for filte ondition com Media 1M 3.4021 0.0620 2.0986	sity correct er assembly tact Hy-Pro 3M 2.8710 0.0523 1.7710	ion should n sizing guide for sizing re 6M 1.9270 0.0351 1.1980	ot exceed 1 lines & exar commendat 10M 1.3030 0.0237 1.0420	0% of nples. For ions. 16M 0.9198 0.0168 0.8658	25M 0.8860 0.0161 0.8340	0.4700 0.0086 0.4170
Compatibility	Filter asse filter asser application Model	mbly bypass ns with extre Length L4 L6	setting. See pageme cold start co Units psid/gpm bard/Ipm psid/gpm bard/Ipm	ge 22 for filte ondition com Media 1M 3.4021 0.0620 2.0986 0.0382	sity correct er assembly tact Hy-Pro 3M 2.8710 0.0523 1.7710 0.0323	ion should n sizing guide for sizing re 6M 1.9270 0.0351 1.1980 0.0218	ot exceed 1 lines & exar commendat 1.3030 0.0237 1.0420 0.0190	0% of nples. For ions. 16M 0.9198 0.0168 0.8658 0.0158	25M 0.8860 0.0161 0.8340 0.0152	0.4700 0.0086 0.4170 0.0076
Compatibility	Filter asse filter asser application Model	bly bypass ns with extre Length	setting. See pageme cold start co Units psid/gpm bard/Ipm psid/gpm bard/Ipm psid/gpm	ge 22 for filte ondition com Media 1M 3.4021 0.0620 2.0986 0.0382 1.4943	sity correct er assembly tact Hy-Pro 3M 2.8710 0.0523 1.7710 0.0323 1.2610	ion should n sizing guide for sizing re 6M 1.9270 0.0351 1.1980 0.0218 1.0420	tot exceed 1 lines & exar commendat 1.3030 0.0237 1.0420 0.0190 0.7820	0% of nples. For ions. 16M 0.9198 0.0168 0.8658 0.0158 0.6489	25M 0.8860 0.0161 0.8340 0.0152 0.6250	0.4700 0.0086 0.4170 0.0076 0.3130
Compatibility Filter Sizing ¹	Filter asse filter asser application Model DFN19N	mbly bypass ns with extre Length L4 L6 L10	setting. See pageme cold start co Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	ge 22 for filte ondition com Media 1M 3.4021 0.0620 2.0986 0.0382 1.4943 0.0272	sity correct er assembly tact Hy-Pro 3M 2.8710 0.0523 1.7710 0.0323 1.2610 0.0230	ion should n sizing guide for sizing re 6M 1.9270 0.0351 1.1980 0.0218 1.0420 0.0190	tot exceed 1 lines & exar commendat 1.3030 0.0237 1.0420 0.0190 0.7820 0.0142	0% of nples. For ions. 16M 0.9198 0.0168 0.8658 0.0158 0.6489 0.0118	25M 0.8860 0.0161 0.8340 0.0152 0.6250 0.0114	0.4700 0.0086 0.4170 0.0076 0.3130 0.0057
Compatibility Filter Sizing ¹	Filter asse filter asser application Model	mbly bypass ns with extre Length L4 L6	setting. See pageme cold start co Units psid/gpm bard/Ipm psid/gpm bard/Ipm psid/gpm	ge 22 for filte ondition com Media 1M 3.4021 0.0620 2.0986 0.0382 1.4943 0.0272 0.6541	sity correct er assembly tact Hy-Pro 3M 2.8710 0.0523 1.7710 0.0323 1.2610 0.0230 0.5520	ion should n sizing guide for sizing re 6M 1.9270 0.0351 1.1980 0.0218 1.0420 0.0190 0.4170	tot exceed 1 lines & exar commendat 1.3030 0.0237 1.0420 0.0190 0.7820 0.0142 0.3440	0% of nples. For ions. 16M 0.9198 0.0168 0.8658 0.0158 0.6489 0.0118 0.2710	25M 0.8860 0.0161 0.8340 0.0152 0.6250 0.0114 0.2610	0.4700 0.0086 0.4170 0.0076 0.3130
Compatibility	Filter asse filter asser application Model DFN19N	mbly bypass ns with extre Length L4 L6 L10	setting. See pageme cold start co	ge 22 for filte ondition com Media 1M 3.4021 0.0620 2.0986 0.0382 1.4943 0.0272	sity correct er assembly tact Hy-Pro 3M 2.8710 0.0523 1.7710 0.0323 1.2610 0.0230	ion should n sizing guide for sizing re 6M 1.9270 0.0351 1.1980 0.0218 1.0420 0.0190	tot exceed 1 lines & exar commendat 1.3030 0.0237 1.0420 0.0190 0.7820 0.0142	0% of nples. For ions. 16M 0.9198 0.0168 0.8658 0.0158 0.6489 0.0118	25M 0.8860 0.0161 0.8340 0.0152 0.6250 0.0114	0.4700 0.0086 0.4170 0.0076 0.3130 0.0057 0.1550
Compatibility Filter Sizing ¹	Filter asse filter asser application Model DFN19N	mbly bypass ns with extre Length L4 L6 L10 L6 L10	setting. See pageme cold start cold start/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	ge 22 for filte ondition com Media 1M 3.4021 0.0620 2.0986 0.0382 1.4943 0.0272 0.6541 0.0119 0.5190 0.0095	sity correct er assembly tact Hy-Pro 3M 2.8710 0.0523 1.7710 0.0323 1.2610 0.0230 0.5520 0.0101 0.4380 0.0080	ion should n sizing guide for sizing re 6M 1.9270 0.0351 1.1980 0.0218 1.0420 0.0190 0.4170 0.0076 0.3230 0.0059	tot exceed 1 lines & exar commendat 1.3030 0.0237 1.0420 0.0190 0.7820 0.0142 0.3440 0.0063 0.2870 0.0052	0% of nples. For ions. 16M 0.9198 0.0168 0.8658 0.0158 0.6489 0.0118 0.2710 0.0049 0.2429 0.0044	25M 0.8860 0.0161 0.8340 0.0152 0.6250 0.0114 0.2610 0.0048 0.2340 0.0043	0.4700 0.0086 0.4170 0.0076 0.3130 0.0057 0.1550 0.0028 0.1350 0.0025
Compatibility Filter Sizing ¹	Filter asse filter asser application Model DFN19N	mbly bypass ns with extre Length L4 L6 L10 L6	setting. See pageme cold start co	ge 22 for filte ondition com Media 1M 3.4021 0.0620 2.0986 0.0382 1.4943 0.0272 0.6541 0.0119 0.5190	sity correct er assembly tact Hy-Pro 3M 2.8710 0.0523 1.7710 0.0323 1.2610 0.0230 0.5520 0.0101 0.4380	ion should n sizing guide for sizing re 6M 1.9270 0.0351 1.1980 0.0218 1.0420 0.0190 0.4170 0.0076 0.3230	tot exceed 1 lines & exar commendat 1.3030 0.0237 1.0420 0.0190 0.7820 0.0142 0.3440 0.0063 0.2870	0% of nples. For ions. 16M 0.9198 0.0168 0.8658 0.0158 0.6489 0.0118 0.2710 0.0049 0.2429	25M 0.8860 0.0161 0.8340 0.0152 0.6250 0.0114 0.2610 0.0048 0.2340	0.4700 0.0086 0.4170 0.0076 0.3130 0.0057 0.1550 0.0028 0.1350

1Max flow rates and ΔP factors assume u = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

DFN Part Number Builder

2'	19	9

DFNSeries	Connection Collapse Length Bypass ΔP Indicator Media Seal
Series	19 25 gpm (95 lpm) max flow rate ¹ 39 70 gpm (265 lpm) max flow rate ¹
Connection	DFN19 DFN39 F16 ² 1" Code 61 flange F24 ² 1½" Code 61 flange G16 1" G thread (BSPP) G24 1½" G thread (BSPP)
Collapse Rating	H 3000 psid (206.8 bard) N 450 psid (31.0 bard)
Element Length	 DFN19 4 4" (10 cm) nominal length filter element and housing 6 6" (15 cm) nominal length filter element and housing 10" (25 cm) nominal length filter element and housing 10" (25 cm) nominal length filter element and housing 15" (38 cm) nominal length filter element and housing
Bypass	 3 Integrated bypass - 50 psid (3.4 bard) X No bypass
ΔP Indicator	 D Visual with electric switch (DIN connection) V Visual/Mechanical X No indicator (port plugged)
Media Selection	$ \begin{array}{l c c c c c c } \hline G8 \ Dualglass & G8 \ Dualglass + water removal \\ \hline 1M & \beta_2.5_{[C]} \geq 1000, \ \beta_1 \geq 200 \\ \hline 3M & \beta_5_{[C]} \geq 1000, \ \beta_3 \geq 200 \\ \hline 6M & \beta_7_{[C]} \geq 1000, \ \beta_6 \geq 200 \\ \hline 10M & \beta_{12_{[C]}} \geq 1000, \ \beta_{12} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{12} \geq 200 \\ \hline 3B^3 & \beta_{22_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{12} \geq 200 \\ \hline 3B^2_{22_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 10M & \beta_{12_{[C]}} \geq 1000, \ \beta_{12} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{12} \geq 200 \\ \hline 3B^2_{22_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{25} \geq 200 \\ \hline 16M & \beta_{17_{[C]}} \geq 1000, \ \beta_{17_{[C]}$
Seals	 B Nitrile (Buna) V Fluorocarbon

¹When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. ³Watric threads for flange connection bolts. See Appendix for exact connection sizes and specifications. ³Water Removal Media available only with Collapse option "N."

DFH High Pressure Duplex Filter Assembly

The DFH series is designed to remove particulate and water from a variety of fluids including hydrogen seal oil, turbine lube oil, bearing lube oil, and FD-ID-PA fan lube. Applicable for wind turbine, boiler feed pump, mechanical/electro hydraulic control, and fuel handling systems.

Ideal for systems where filters must be serviced while continuous operation is not interrupted such as hydraulic, gearbox, and servo systems.

Max Operating Pressure: 3600 psi (248 bar)

hyprofiltration.com/DFH

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 2.5_{CI} \ge 1000$, + water absorption, you get the perfect element for your application, every time.

Two positions, one result.

DFH housings provide unmatched in-line filtration with incredible ease of use. With a squeeze of the trigger and turn of the wrist, you'll introduce a new element to your fluid while simultaneously valving the used element out of service to easily change and replace, all while your system continues operating at full capacity.

All duplexes are not created equal.

Air in any lube system can quickly cause failure and force you to take your system down for maintenance. DFN assemblies utilize internal equalization and external vent ports to automatically push oil into and purge air out from the unused housing without any added effort.

11.1 in [282.6 mm] **DFH19** 7.3 in [186.0 mm] **DFH39** 8.3 in [210.1 mm] 3.9 in [100.0 mm] Installation Installation 3.4 in 0.4 in [86.4 mm] [10.0 mm] Drawing Drawing 4X M12X1.25 4X M8X1.25 4.2 in [107.3 mm] 2.4 in [62.0 mm] 2.2 in [55.0 mm] 1.2 in [31.1 mm] 5.5 in [140.0 mm] 6.2 in [157.4 mm] 2.1 in [54.1 mm] 2.1 in [52.8 mm] 1.9 in [48.4 mm] 1.5 in [38.0 mm] (L6) (L4) 11.9 in [302.2 mm] 7.2 in [182.7 mm] (L6) 9.6 in [243.8 mm] 1 (L10) (L10) 15.4 in [392.1 mm] 13.1 in [331.5 mm] (L15) 21.5 in [545.9 mm]

221

DFH Specifications

Dimensions	See Installation Drawing on page 221 for model specific dimensions.									
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)				Ambient Temperature -4°F to 140°F (-20C to 60C)					
Operating Pressure	DFH19 3600 psi ((248.2 bar) m	ах			DFH39 3000 psi (20)6.8 bar) ma	ах		
ΔP Indicator Trigger	73 psid (5	bard)								
Element Collapse Rating	450 psid ((31.0 bard)								
Materials of Construction	Head Cast steel			Bowl Cast stee	1			ousing Bypa eel	ass Valve	
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[C]} \ge 1000$ ($\beta x \ge 200$)			media co		erformance th water rem 3x ≥ 200)		ainless steel edia βx _[C] ≥ 2		
Replacement Elements	To deter Series Co 19 39	ode Fi	lacement ele ilter Element P P19[Collapse Co P39[Collapse Co	ode] L [Length	n Code] – [M	ledia Selectio	on Code][Sea	al Code]	Example HP19HL6-10 HP39NL6-6A	MB
Fluid Compatibility	Biodegrad	dable and mi	neral based flui	ds. For high	water based	d of specifie	d synthetics	s, consult fac	ctory.	
Filter Sizing ¹			element ΔP after setting. See pag							
י וונכי טוצוווצי			eme cold start c							
			eme cold start c Units						25M	**W
	applicatio	ons with extre	Units psid/gpm	ondition con Media 1M 3.402	tact Hy-Pro 3M 2.871	for sizing re 6M 1.927	commenda 10M 1.303	16M 0.920	0.886	0.470
	applicatio	ons with extre	Units psid/gpm bard/lpm psid/gpm	ondition con Media 1M 3.402 0.0620 2.099	3M 2.871 0.0523 1.771	for sizing re 6M 1.927 0.0351 1.198	10M 1.303 0.0237 1.042	16M 0.920 0.0168 0.866	0.886 0.0161 0.834	0.470 0.0086 0.417
	applicatio	L4 L6	Units psid/gpm bard/lpm psid/gpm bard/lpm	ondition con Media 1M 3.402 0.0620 2.099 0.0382	3M 2.871 0.0523 1.771 0.0323	6M 1.927 0.0351 1.198 0.0218	10M 1.303 0.0237 1.042 0.0190	16M 0.920 0.0168 0.866 0.0158	0.886 0.0161 0.834 0.0152	0.470 0.0086 0.417 0.0076
	applicatio	Length	Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm	ondition con Media 1M 3.402 0.0620 2.099 0.0382 1.494	3M 2.871 0.0523 1.771 0.0323 1.261	6M 1.927 0.0351 1.198 0.0218 1.042	10M 1.303 0.0237 1.042 0.0190 0.782	16M 0.920 0.0168 0.866 0.0158 0.649	0.886 0.0161 0.834 0.0152 0.625	0.470 0.0086 0.417 0.0076 0.313
ΔP Factors ¹	applicatio	L4 L6	Units psid/gpm bard/lpm psid/gpm bard/lpm	ondition con Media 1M 3.402 0.0620 2.099 0.0382	3M 2.871 0.0523 1.771 0.0323	6M 1.927 0.0351 1.198 0.0218	10M 1.303 0.0237 1.042 0.0190	16M 0.920 0.0168 0.866 0.0158	0.886 0.0161 0.834 0.0152	0.470 0.0086 0.417 0.0076
	applicatio Model DFH19	L4 L6 L6 L6	Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm bard/lpm	ondition con Media 1M 3.402 0.0620 2.099 0.0382 1.494 0.0272 0.654 0.0119	3M 2.871 0.0523 1.771 0.0323 1.261 0.0230 0.552 0.0101	6M 1.927 0.0351 1.198 0.0218 1.042 0.0190 0.417 0.0076	10M 1.303 0.0237 1.042 0.0190 0.782 0.0142 0.344 0.0063	16M 0.920 0.0168 0.866 0.0158 0.649 0.0118 0.271 0.0049	0.886 0.0161 0.834 0.0152 0.625 0.0114 0.261 0.0048	0.470 0.0086 0.417 0.0076 0.313 0.0057 0.155 0.0028
	applicatio Model DFH19	L4 L6 L10	Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm	ondition con Media 1M 3.402 0.0620 2.099 0.0382 1.494 0.0272 0.654 0.0119 0.519	3M 2.871 0.0523 1.771 0.0323 1.261 0.0230 0.552 0.0101 0.438	6M 1.927 0.0351 1.198 0.0218 1.042 0.0190 0.417 0.0076 0.323	10M 1.303 0.0237 1.042 0.0190 0.782 0.0142 0.344 0.0063 0.287	16M 0.920 0.0168 0.866 0.0158 0.649 0.0118 0.271 0.0049 0.243	0.886 0.0161 0.834 0.0152 0.625 0.0114 0.261 0.0048 0.234	0.470 0.0086 0.417 0.0076 0.313 0.0057 0.155 0.0028 0.135
	applicatio Model DFH19	L4 L6 L6 L6	Units psid/gpm bard/lpm psid/gpm bard/lpm psid/gpm bard/lpm bard/lpm	ondition con Media 1M 3.402 0.0620 2.099 0.0382 1.494 0.0272 0.654 0.0119	3M 2.871 0.0523 1.771 0.0323 1.261 0.0230 0.552 0.0101	6M 1.927 0.0351 1.198 0.0218 1.042 0.0190 0.417 0.0076	10M 1.303 0.0237 1.042 0.0190 0.782 0.0142 0.344 0.0063	16M 0.920 0.0168 0.866 0.0158 0.649 0.0118 0.271 0.0049	0.886 0.0161 0.834 0.0152 0.625 0.0114 0.261 0.0048	0.470 0.0086 0.417 0.0076 0.313 0.0057 0.155 0.0028

¹Max flow rates and ΔP factors assume υ = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

DFH Part Number Builder

DFH	Connection	Collapse Length	Bypass	ΔP Indicator Media	a Seal	
Series		(95 lpm) max flow ra (265 lpm) max flow r				
Connection	DFH19 F16 ² 1" Code G16 1" G thre				Code 61 flange G thread (BSPP)	
Collapse		sid (206.8 bard) d (31.0 bard)				
Element Length	6 6" (15 cr	m) nominal length fil m) nominal length fil cm) nominal length f	ter element and ho	busing 10 10" (2	25 cm) nominal leng	h filter element and housing gth filter element and housing gth filter element and housing
Bypass	7 102 psid X No bypa	d (7 bard) bypass ass				
ΔP Indicator	V Visual/N	vith electric switch (D Mechanical cator (port plugged)	IN connection)			
Media Selection	3M $β5_{[C]} \ge 10$ 6M $β7_{[C]} \ge 10$ 10M $β12_{[C]} \ge 1$ 16M $β17_{[C]} \ge 1$	S 1000, β1 ≥ 200 000, β3 ≥ 200 000, β6 ≥ 200 1000, β12 ≥ 200 1000, β17 ≥ 200 1000, β25 ≥ 200	 3A³ β5_[C] ≥ 1 6A³ β7_[C] ≥ 1 10A³ β12_[C] ≥ 	s + water removal 000, $β3 ≥ 200$ 000, $β6 ≥ 200$ 1000, $β12 ≥ 200$ 1000, $β25 ≥ 200$	Stainless 25W 25μ 40W 40μ 74W 74μ 149W 149μ	nominal nominal
Seals	B Nitrile (EV Fluoroca					

¹When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. ²Metric threads for flange connection bolts. See Appendix for exact connection sizes and specifications.

³Water Removal Media available only with Collapse option "N."

HY-PRO

223

Protect your uptime, critical hydraulic & lube assets and fluid life. Hy-Dry breathers are critical in Hy-Pro's Total System Cleanliness approach as a barrier preventing airborne particles and water from entering reservoirs and gearboxes.

HY-PRO

hyprofiltration.com/Hy-Dry

A breath of fresh air.

Atmospheric moisture is a continuous threat to efficient operations of your equipment and machinery. Hy-Dry Breathers utilize high capacity silica gel to remove water from the air before it can ever enter your equipment, protecting your investment and helping prevent fluid breakdown.

Unmistakable water removal.

As Hy-Dry Breathers adsorb moisture from the air entering your system, the gold silica gel gradually changes colors to let you know it's working effectively and even give you a reminder of when it's time for replacement.

Dual contamination prevention.

Each Hy-Dry Breather is equipped with an internal 2 micron particulate filter on both ends of the silica chamber to protect your system from airborne contamination. As an added benefit, exhaust from your reservoir flushes the trapped particulate from the outer filter and back into the atmosphere, making your Hy-Dry a selfcleaning powerhouse for contamination prevention.

Keep contamination in check.

Select models of Hy-Dry breathers come with dual check valves (0.1 psi / 0.007 bar standard) to prevent outside moisture from entering and greatly extending the life of your breather.

The perfect fit for your system.

Hy-Dry Breathers come in a variety of sizes, connections, and other options designed for countless applications. Whether you're installing on a small gearbox reservoir or on-board a high vibration mobile application, there's a Hy-Dry Breather suited perfectly to fit your needs.

Total Systems Cleanliness

Used in conjunction with more robust particulate filtration, Hy-Dry Breathers are a pivotal component to achieving Total Systems Cleanliness and ensuring your equipment is protected from all forms of contamination.

225

²²⁶ HPB Disposable Cartridge Breathers

Stationary Applications

Designed for versatility, HPB Breathers provide the base for all Hy-Dry Breathers with a wide range of fluid compatibility and numerous models to fit nearly any stationary application. The high impact resistant ABS caps and clear acrylic silica chamber provide protection from industrial environments while making inspection and replacement easier than ever.

unn-ti

					HPB - 11	PRO HPB-IS		
				HPB-11				
Model	HPB-31	HPB-34	HPB-100	HPB-101	HPB-102	HPB-103	HPB-108	HPB-154
	2"	3.25"	3.5 "	5"	8"	8"	10"	5"
Height	2 5.1 cm	8.3 cm	8.9 cm	12.7 cm	20.3 cm	20.3 cm	25.4 cm	12.7 cm
Diamatar	2"	3.25"	5"	5"	5"	5"	5"	5"
Diameter	_ 5.1 cm	8.3 cm	12.7 cm	12.7 cm	12.7 cm	12.7 cm	12.7 cm	12.7 cm
Stem Height	1.25"	N/A	1.25''	1.25"	1.25"	1.25"	N/A	1.25"
Stelli Height	3.2 cm	N/A	3.2 cm	3.2 cm	3.2 cm	3.2 cm	N/A	3.2 cm
Connection	1/2" FNPT	1/2" FNPT	1" Slip Fit	1" Slip Fit	1" Slip Fit	1" MNPT	2" MNPT	1" MNPT
Silica Gel	0.08 lb	0.50 lb	0.80 lb	1.40 lb	2.70 lb	2.70 lb	3.50 lb	1.40 lb
Sinca Ger	0.04 kg	0.23 kg	0.36 kg	0.64 kg	1.22 kg	1.22 kg	1.59 kg	0.64 kg
Fluid Capacity	0.5 oz	3.1 oz	4.9 oz	8.6 oz	16.6 oz	16.6 oz	21.5 oz	8.6 oz
ridia capacity	14 ml	90 ml	145 ml	254 ml	490 ml	490 ml	635 ml	254 ml
Airflow	5 cfm	5 cfm	20 cfm	20 cfm	20 cfm	20 cfm	20 cfm	20 cfm
7 (1110 00	8 m³/h	8 m³/h	34 m³/h	34 m³/h	34 m³/h	34 m³/h	34 m³/h	34 m³/h
Reservoir Flow	37 gpm	37 gpm	150 gpm	150 gpm	150 gpm	150 gpm	150 gpm	150 gpm
	140 lpm	140 lpm	568 lpm					
Particulate	2µ _[C] >1000							
Efficiency								

HY-PRO

HPBC Integrated Check Valve Breathers 227

High Humidity & Dust Applications

Taking our HPB Disposable Breathers even further, HPBC Disposable Breathers feature integrated intake and exhaust check valves to close the system from the atmosphere until airflow is required and extend the life of the breather. The reusable top cap that houses the check valves provides incredible ease of use in replacing spent cartridges and protects new breathers from the moment you install them.

			Para HPRC-10		HPBC-122		
		HERE'S		HPBC-121			
	_		HPB	HPR.35		HERE	The second se
Model	HPBC-100	HPBC-101	HPBC-102	HPBC-121	HPBC-122	HPBC-503	HPBC-505
Height	6.25''	7''	10''	7''	10''	7''	10''
	15.9 cm	17.8 cm	25.4 cm	17.8 cm	25.4 cm	17.8 cm	25.4 cm
Diameter	3.25''	5''	5''	5''	5''	5''	5''
	8.3 cm	12.7 cm	12.7 cm	12.7 cm	12.7 cm	12.7 cm	1 2.7 cm
Stem Height	N/A	1.25''	1.25"	1.625''	1.625''	1.375''	1.375''
	N/A	3.2 cm	3.2 cm	4.1 cm	4.1 cm	3.5 cm	3.5 cm
Connection	1/2" FNPT	1" Slip Fit	1" Slip Fit	2" MNPT	2" MNPT	1" MNPT	1" MNPT
Check Valve In	0.1 psi						
	0.007 bar						
Check Valve Out	0.1 psi						
	0.007 bar						
Silica Gel	0.8 lb	1.4 lb	2.7 lb	1.4 lb	2.7 lb	1.4 lb	2.7 lb
	0.36 kg	0.64 kg	1.22 kg	0.64 kg	1.22 kg	0.64 kg	1.22 kg
Fluid Capacity	4.91 oz	8.6 oz	16.56 oz	8.6 oz	16.56 oz	8.6 oz	16.56 oz
	145 ml	254 ml	490 ml	254 ml	490 ml	254 ml	490 ml
Airflow	10 cfm	20 cfm					
	17 m³/h	34 m³/h					
Reservoir Flow	75 gpm	150 gpm	150 gpm	150 gpm	150 gpm	150 gpm	150 gpm
	284 lpm	568 lpm					
Replacement Cartridge	HPB-143	HPB-341	HPB-342	HPB-343	HPB-344	HPB-345	HPB-346
Particulate Efficiency	2µ _[C] >1000						

hyprofiltration.com/Hy-Dry

²²⁸ HPBCR & HPBR Extreme Duty Breathers

High Vibration, Dust, & Humidity Applications

Featuring a reusable metal reinforced based with male NPT threads, HPBCR and HPBR Breathers are ideal for fluid management applications that require protection from extreme conditions. HPBCR models include intake and exhaust check valves in a reusable top cap to prevent unnecessary air flow and economical replacement of the desiccant cartridges. Perfect for high vibration applications such as mobile, wind power, mining and many others.

Model	HPBCR-101	HPBCR-102	HPBR-101	HPBR-102
Height	8.5 ''	11.5 "	6.5''	9.5"
	21.6 cm	29.2 cm	16.5 cm	24.1 cm
Diameter	5.2 "	5.2"	5.2"	5.2"
Diameter	13 cm	13 cm	13 cm	13 cm
Stem Height	1"	1"	1"	1"
	2.5 cm	2.5 cm	2.5 cm	2.5 cm
Connection	1" MNPT	1" MNPT	1" MNPT	1" MNPT
Check Valve In	0.1 psi	0.1 psi	0.1 psi	0.1 psi
	0.007 bar	0.007 bar	0.007 bar	0.007 bar
Check Valve Out	0.1 psi	0.1 psi	0.1 psi	0.1 psi
	0.007 bar	0.007 bar	0.007 bar	0.007 bar
Silica Gel	1.4 lb	2.7 lb	1.4 lb	2.7 lb
	0.64 kg	1.22 kg	0.64 kg	1.22 kg
Fluid Capacity	8.6 oz	16.6 oz	8.6 oz	16.6 oz
riulu capacity	254 ml	490 ml	254 ml	490 ml
Airflow	25 cfm	25 cfm	25 cfm	25 cfm
7 (11 11 0 1 1	42 m³/h	42 m³/h	42 m³/h	42 m³/h
Reservoir Flow	187 gpm	187 gpm	187 gpm	187 gpm
	708 lpm	708 lpm	708 lpm	708 lpm
Replacement Element	HPB-351	HPB-352	HPB-301	HPB-302
Particulate Efficiency	2µ _[C] >1000	2µ _[C] >1000	2µ _[C] >1000	2µ _[C] >1000

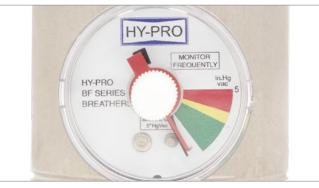
HPBA Reservoir Adapters

Model	Element Connection	Reservoir Connection	
HPBA-101	1" Slip Fit	Flange No Mounting Holes	
HPBA-102	1" Slip Fit	1" MNPT	
HPBA-103	1" Slip Fit	3/4" MNPT	
HPBA-104	1" Slip Fit	Bayonet	
HPBA-105	1" Slip Fit	1" - 12 UNF	
HPBA-106	1" Slip Fit	1.5" - 16 UNF	
HPBA-110	1" Slip Fit	-~~~~	TANK
HPBA-114	1" Slip Fit	Flange 6 ANSI Mounting Holes	
HPBA-201	1" Slip Fit	1.125" - 16 UNF	
HPBA-403	3/8" MNPT	1/2" MNPT	
HPBA-G31	1" Slip Fit	G 1.25" - 11 BSPP	

BF Breathers High Flow Particulate Breathers

Control airborne contamination and extend the life of other filters in your system. BF Breathers go beyond ineffective filler/breather caps to protect your system with high capacity, high efficiency pleated glass media elements. Combine with Hy-Pro Filter Assemblies and Fluid Conditioning Equipment for the ultimate in Total Systems Cleanliness.

hyprofiltration.com/Breathers



Tells the tale of your system.

BF Breathers are equipped with tattle-tale gages that capture the maximum vacuum level caused by rising and falling fluid levels to let you know exactly how your system is operating. And unlike those nagging kids, you'll be more than grateful for this tattle-tale.

Let it breathe.

The same Hy-Pro Dualglass you trust to remove particulate from your hydraulic and lube oils pulls double duty in the BF Breathers by removing airborne contamination from incoming air as your reservoir levels change. Designed to withstand the constant flexing of hydraulic systems, Hy-Pro filter media is the hands-down best at capturing and preventing contaminants from ever entering your systems.

The perfect fit.

Whether you're operating reservoirs with high cylinder return flows or large extrusion presses, BF Breathers offer the perfect fit for your system. And with numerous standard connections, you can set yours up straight from the box - no adapters required.

BF Specifications'

Model	BF*256	BF*2511	BF*2517	BF*36	BF*311	BF*317
Height	12.4 in	18.1 in	23.7 in	12.4 in	18.1 in	23.7 in
ricigite	31.5 cm	46.0 cm	60.2 cm	31.5 cm	46.0 cm	60.2 cm
Diameter	8.9 in	8.9 in	8.9 in	8.9 in	8.9 in	8.9 in
Diameter	22.6 cm	22.6 cm	22.6 cm	22.6 cm	22.6 cm	22.6 cm
Weight	21 lb	22 lb	28 lb	25 lb	26 lb	32 lb
Weight	9.5 kg	10.0 kg	12.7 kg	11.3 kg	11.8 kg	14.5 kg
Air Flow	1320 gpm	1450 gpm	1580 gpm	1825 gpm	2100 gpm	2375 gpm
7 (11 110 10	176 cfm	194 cfm	211 cfm	244 cfm	281 cfm	317 cfm
	4997 lpm	5489 lpm	5981 lpm	6908 lpm	7949 lpm	8990 lpm
Operating Temperature	30°F to 225°F (0°C to 105°C)					
Materials of Construction	Tube Assembly Plated steel		Shell Powder coated	steel	Element End C Synthetic – inci	C aps + Handle nerates @ 1100°F (593°C)

¹Specifications are approximations taken from base models (Connection options B**/N**) and will vary according to options chosen. Connection option A** dimensions will vary slightly. Contact Hy-Pro for exact specifications.

BF Part Number Builder

BF			-		
	Connection	Length		Media	Seal

Connection	A2 A3 B15 B2 B25 B3 N15 N2 N25 N3	2" ANSI flange 3" ANSI flange 1.5" BSPT 2" BSPT 2.5" BSPT 3" BSPT 1.5" NPT 2" NPT 2.5" NPT 2.5" NPT 3" NPT
Length	6 11 17	6" (15 cm) nominal length filter 11" (28 cm) nominal length filter 17" (38 cm) nominal length filter
Media Selection	1M 3M 6M 10M	Dualglass 0.1µ absolute 0.3µ absolute 0.6µ absolute 1.0µ absolute 2.5µ absolute
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stainless steel support mesh

Spin-On Breathers G8 Dualglass Particulate Breathers + Adapters

Control solid contaminant ingression with high capacity, high efficiency pleated glass elements. Spin-On Breathers combine ease of installation and adaptability to prevent airborne contamination and extend the life of other filters in your system.

hyprofiltration.com/Breathers

Contamination Prevention 101.

Fluid contamination is the root cause of most hydraulic system failures and while most systems today utilize oil filters, it is not uncommon for airborne contamination to go overlooked altogether. By preventing airborne contamination ingression, Spin-On Breathers help reduce strain on system filters to extend the life of your fluids and protect your critical components.

Plug and play.

With common threaded and bayonet style adapters and numerous media options, Spin-On Breathers are a quick way to replace ineffective filler/breather caps right out of the box.

Total Systems Cleanliness.

Combining Spin-On Breathers with other Hy-Pro Fluid Contamination Solutions will yield a clean, healthy, and reliable hydraulic or lubrication system.

Spin-On Breather Adapters

	3				
Adapter Model	ADBB-75	ADBB-76	ADTB-75	ADTB-76	ADTB-76V
Material of Construction	Aluminum	Aluminum	Plated steel	Plated steel	Plated steel
Overall Length	2.58" (65.53 mm)	2.38" (60.45 mm)	3.70" (93.98 mm)	1.75" (44.45 mm)	2.48" (62.99 mm)
Element Thread Length	0.70" (17.78 mm)	0.70" (17.78 mm)	0.50" (12.7 mm)	0.30" (7.62 mm)	0.35" (8.89 mm)
Element Connection	1½" - 16 UN (HP75 series spin-on)	1" - 12 UNF-2A (HP76 series spin-on)	1½" - 16 UN (HP75 series spin-on)	1" - 12 UNF-2A (HP76 series spin-on)	1½" - 16 UNF (HP76 series spin-on)
Reservoir Connection	1.87" pin length 1.40" diameter boss	1.87" pin length 1.40" diameter boss	1¼" NPT	34" NPT	3⁄4″ NPT
Seals	Nitrile (Buna)	Nitrile (Buna)	Nitrile (Buna)	Nitrile (Buna)	Nitrile (Buna)

Breather Installation Dra

Breather Part Number Builder Spin

HP

Media

Flow Rate

Media Selection

-B

G8 Dualglass **1M** 0.1µ absolute air filtration Selection 3M

- 0.3µ absolute air filtration 6M 0.6µ absolute air filtration 12M 1.0µ absolute air filtration
- 25M 2.2µ absolute air filtration

hyprofiltration.com/Breathers

233

PTK1 Oil Analysis Patch Test Kit

With PTK1, oil cleanliness can be visually analyzed in the field without waiting for lab results and losing control of the analysis process. The PTK1 kit provides the opportunity to see the type, concentration, and actual size of particulate contamination inside the system.

hyprofiltration.com/PTK1

Protect your investment and your equipment.

From the sample bottles to the microscope, everything you need for running patch tests on your oil comes neatly packed away in the PTK1 case. Watertight, crushproof, and dust proof, the Pelican[™] Protector Case that houses every PTK1 protects your test equipment so whether you're stowing it for flights between plants or working in the dirtiest of environments, your test equipment is safe and ready when you need it.

See the difference.

With the 100x magnification field microscope and included patch light in every PTK1, examining and monitoring the condition of your oils has never been easier.

ISO Codes have never been easier.

Included in every PTK1 is a visual correlation chart to determine approximate ISO cleanliness codes and types of contamination present in your system. Combined with using Hy-Pro filter elements, you'll be amazed as you watch contamination disappear from your fluids sample after sample.

PTK1 Specifications

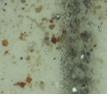
Complete PTK-1 Kit includes:


```
100x Magnification field microscope
with battery operated patch light
(2 AAA batteries included)
```

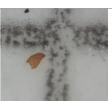

Pelican[™] 1520 – watertight, crushproof, and dust proof case

Forceps for filter patch handling

Vacuum pump to extract fluid samples from the system and process 25 ml sample through filter patch


Funnel assembly with ml fill line for accuracy

Sample bottles (6)


Solvent dispenser with dispensing filters

Visual correlation chart to determine approximate ISO Cleanliness Code of patch test kit sample

Instruction Manual

Visual correlation chart to determine type of particles captured on the patch

VTK On-Site Varnish Test Kits

Condition monitoring is critical in staying ahead of lube oil degradation issues. Varnish Test Kits from Hy-Pro provide on-site access to laboratory grade Membrane Patch Colorimetric (MPC) testing as a key piece in predicting potential varnish problems before unit trip or fail-to-start conditions occur, all according to the world recognized ASTM D7843-12 standard for the measurement of insoluble oxidation by-products.

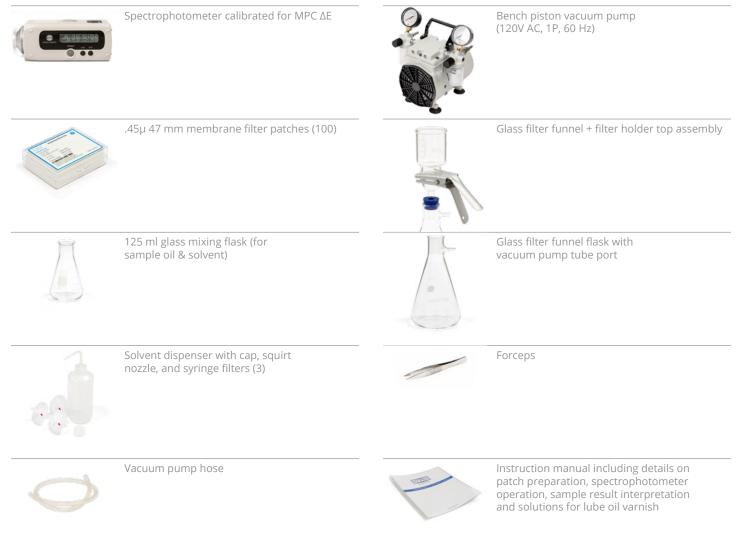
hyprofiltration.com/VTK

Unmistakably easy.

Specifically calibrated for MPC testing according to ASTM D7843-12, the Spectrophotometer in every VTK provides incredible ease of use in colorimetry testing for your fluids with results displayed right on the screen.

Bring the lab to you.

VTKs put the same equipment used in labs around the world directly at your disposal to give you access to the most accurate varnish potential testing and trending. Everything you need to properly prepare and analyze a filter patch for varnish potential comes included.



Results before your eyes.

Testing in-house provides the fastest results to understand the status of your fluid. With varnish removal filtration from Hy-Pro and VTK on-site testing, you'll be amazed as your fluids become cleaner sample after sample.

VTK Specifications

Complete Varnish Test Kit includes:

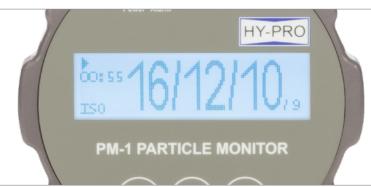
¹MPC testing should be performed to specifications documented in ASTM D7843-12. For more information or to purchase a report, visit http://www.astm.org/Standards/D7843.htm

hyprofiltration.com/VTK

PM-1 On-Line ISO Code Particle Monitor

Get fast and accurate ISO cleanliness code readings from your hydraulic and lube oils in real time with the PM-1 Particle Monitor.

hyprofiltration.com/PM1



Eliminate the guesswork.

Dedicating PM-1 to hydraulic and lube systems can eliminate the need for bottle sampling and let's you know how clean your oil is at all times. PM-1 can be integrated into operating software for constant monitoring and can also be set up to trigger alarms if a system gets too dirty, giving you complete control of your fluids and your systems.

Unmistakably easy.

As the PM-1 analyzes your fluids, the on-screen counts update in real time to show you the ISO cleanliness codes for the 4μ , 6μ , 14μ and 21μ channels in incredible clear and easy to read figures.

Perfectly integrated.

Add the PM-1 to almost any Hy-Pro Filtration System with Special Option code "O" (where applicable) to get real time ISO Codes integrated directly on your filtration and always know exactly how clean your hydraulic and lube oils are.

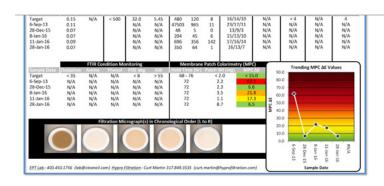
PM-1 Specifications

Display		ted to ISO 11943. It calculates and disp AS 4059, NAS 1638 und GOST 17216.	lays results according							
Voltage	9-33 V dc									
Operating Pressure	Up to 6,090 psi (420	bar) dynamic								
Protection Class	IP67									
Flow Rate	50-400 ml/min (requ	ired for operation)								
Fluid Connection	M16 x 2.0 (Minimess	6 x 2.0 (Minimess®)								
Electric Connection	M12 x 1 (8 Pole)									
Data Memory	On-board 4MB stora	ge capacity								
Fluid Compatibility		neral oils, phosphate esters and specified synthetics (Skydrol by special option only). Not for use with water glycol other water based fluids. Water levels above saturation in any fluids will cause the PM-1 to malfunction.								
Temperature Range	Oil 14°F to 176°F (-10°C to 80°C)	Air 14°F to 176°F (-10°C to 80°C)	Storage -4°F to 176°F (-20°C to 80°C)							
Interface	RS-232, analog outpu	ut 4-20 mA configurable, digital alarm o	output, digital input to start and stop readings							
Ordering	PM-1	PM-1 Particle Monitor								
Information	PM-1-PWRSUP-60 ¹	PM-1 electrical power supply for por	table use (120V AC, 1P, 60 Hz to 24 V dc)							
	PM-1-PWRSUP-501	PM-1 electrical power supply for por	table use (220V AC, 1P, 50 Hz to 24 V dc)							
	PM-1-PWRCAB	PM-1 9-33 V power cable with M-12 : 15' (5 m) power cable plus 1 x 8 pole								
	PM-1-HKIT-60	Minimess [®] & low pressure lube appl	ican [™] case, sampling hoses for high pressure ication adapters, outlet line flow control attachment, Hz) and PM-1-DAT data/power adapter.							
	PM-1-HKIT-50	Minimess [®] & low pressure lube appl	ican [™] case, sampling hoses for high pressure ication adapters, outlet line flow control attachment, Hz) and PM-1-DAT data/power adapter.							
	PM-1-BR	PM-1 back mounting bracket with ru	bber vibration suppression							
	PM-1-USB	USB adapter – RS-232 serial								
	PM-1-DAT ¹	15' (5 m) data cable with open ends								
	PM-1-FITLOW		replace standard Minimess® inlet & outlet are systems< 29 psi (2 bar) where achieving (50 ml/min) is not possible.							
	PM-1-SC ³	PM-1 Soft Calibration								
	PM-1-HC ³	PM-1 Hard Calibration								

¹For PM-1portable counting you must purchase the PM-1-DAT AND either the PM-1-PWRSUP-60 (for 60 Hz) or the PM-1-PWRSUP-50 (50 Hz) to power the unit. The unit cannot be powered with just the PM-1-PWRSUP-60 or -50. The PM-1-DAT allows for connection to RS232 data port for data acquisition and download. ²Minimess® is a registered trademark of Hydrotechnik GMBH.

³It is recommended that the unit receives a soft calibration every 2 years of service to ensure the unit is still operating as intended. If soft calibration indicates the unit is not functioning properly, a hard calibration should be performed.

HY-PRC



Hy-Pro offers two levels of analysis for turbine oils to provide insight into system conditions and to help predict and prevent fluid contamination related issues.

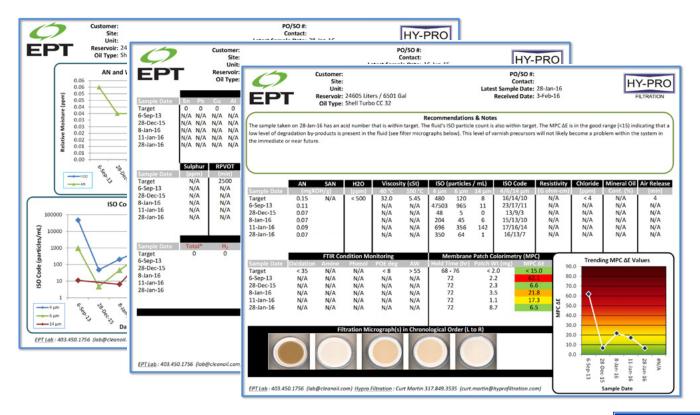
hyprofiltration.com/OA-TO

Comprehensive analysis

Newer generation group II based turbine oils typically have an anti-oxidant additive package made up of sacrificial amines and/or phenols that are depleted as oxidation and oil degradation occurs. The RULER (Remaining Useful Life Evaluation Routine) test compares remaining levels of antioxidant additive versus the levels found in new oil to give you the big picture of exactly how your oil is holding up.

MPC

ASTM developed standard (ASTM D7843-12) for quantifying the amount of oil degradation by-products in the oil that can lead to the formation of varnish deposits. We recommend monitoring MPC monthly on older fluids that may have depleted anti-oxidant levels and quarterly for new fluids.


Trending

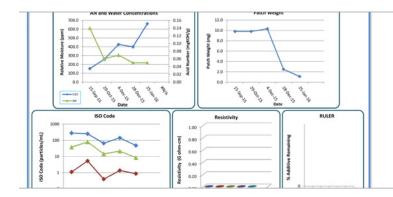
OA-TO is an invaluable tool to establish a baseline for condition based recommendations to eliminate servo valve deposits, high acid number, water, or high ISO Codes. And once a Hy-Pro contamination solution has been implemented, OA-TO trends your progress toward success and trouble free operation.

Analysis Specifications

Oil Analysis Testing	OA-MPC601311	OA-TO601368
Description	MPC varnish potential test includes: MPC colorimetry patch test and photo	Full analysis package includes: TAN Metals analysis ppm Water % Karl Fischer Viscosity at 40°C MPC varnish potential MPC patch weight ISO particle count RULER
Recommended Frequency	Monthly for varnish potential and ICB element condition monitoring	Bi-annually for overall lube oil condition monitoring
Testing Standards	MPC/Patch Weight: ASTM D7843	TAN: ASTM D664 Metals: ASTM D5185 Water: ASTM D7546 Viscosity: ASTM D445 ISO Codes: ISO 11500/4406 MPC/Patch Weight: ASTM D7843
Sample Size Required	100mL (sample bottle included)	350mL (sample bottle included)
Fluid Compatibility	Mineral oils and turbine oils	Mineral oils and turbine oils

Sample Report

hyprofiltration.com/OA-TO


OA-PE Phosphate Ester Analysis

Maintaining phosphate ester based fluids can be complex. Hy-Pro has solutions that make it easy and the first step in achieving trouble free EHC and high temp hydraulic operations is understanding the condition of your fire resistant fluids.



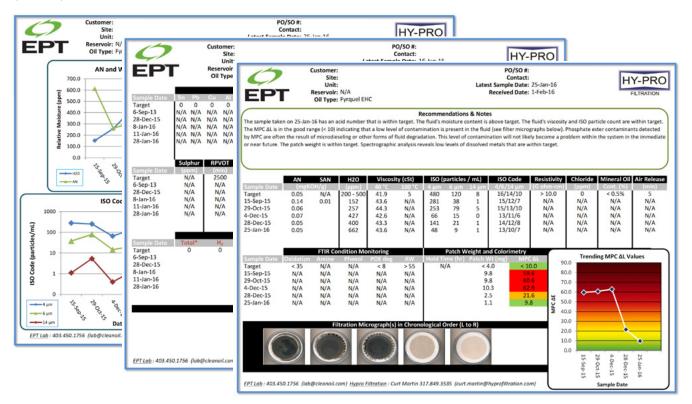
hyprofiltration.com/OA-PE

Restoration focused

With phosphate ester there are no sacrificial additives and fluids are typically condemned based on contamination that could be removed. OA-PE arms you with the information you need to avoid premature fluid replacement or a bleed and feed routine and to implement a solution to restore the fluid to normal operating condition.

Comprehensive analysis

OA-PE is the most comprehensive phosphate ester analysis package currently available. In addition to common metrics such as AN (acid number), water and resistivity, the OA-PE also reports dissolved metals, SAN (strong acid), patch weight, ISO Code and MPC to provide the whole picture of your fluids.


Trending

OA-PE is an invaluable tool to establish a baseline for condition based recommendations to eliminate servo valve deposits, electro-kinetic corrosion, high acid number, water, low resistivity or black fluid. And once a Hy-Pro contamination solution has been implemented, OA-PE trends your progress toward success and trouble free operation.

Analysis Specifications

Oil Analysis Testing	OA-PE601370
Description	Full analysis package includes: TAN Metals analysis ppm Water % Karl Fischer Viscosity at 40°C Resistivity ISO particle count MPC patch weight + photo
Recommended Frequency	Monthly for varnish potential and ICB element condition monitoring
Testing Standards	TAN: ASTM D664 Metals: ASTM D5185 Water: ASTM D7546 Viscosity: ASTM D445 Resistivity: ASTM D1169 ISO Codes: ISO 11500/4406 MPC/Patch Weight: modified ASTM D7843.
Sample Size Required	250mL (sample bottle included)
Fluid Compatibility	Phosphate esters

Sample Report

²⁴⁴ VUD Questionnaire

Name	Phone
Position	Email
Company	Fax
Address	

System Questions

Oil Characteristics		
ISO Cleanliness		
Water Content (PPM)	 	
Water Ingress		
Current Unit	 	
Why Change?	 	
Objective in hours (High PPM to Target PPM)	 	

Location Questions

Temperature	
Utility Services Available	
General Environment (i.e. dry, wet, dust, etc)	
Explosion Proof Requirement?	
Unit	
Plant Application (i.e. turbine, paper mill, etc)	

Information & Respond

Reply Required (in days)

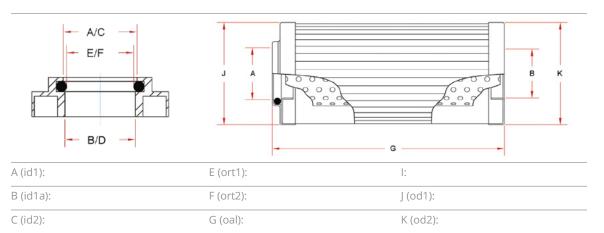
Customer Objectives

hyprofiltration.com/VUD

Filter Application Data Sheet

Name					Con	npany				
Phone					Ema	ail				
Mobile					Fax					
System Description										
Critical System Components										
Filter Location (pressure, return, etc)										
Existing System Filtration (location, micron rating)										
Fluid Information	Manufact	urer/Trader	name:							
	ISO VG:				S.G.	•				
	Viscosity	cSt:			Visc	osity SU	S:			
	Emulsion	Mix:			Wat	er Conte	ent (PPM)):		
Operating Temperature Range	From:		To:		□ ° F	⊂ □°C				
Cold Start Temperature		□ °	°F 🛛 °C	Time Interva	al to Oper	ating Te	mp:			
Contaminant Ingression Rate & Description (coal mill, paper mill)	Low		🗖 Mediu	Im	□ S	evere				
Contaminant (wear metal, gel, etc)										
Maximum Clean Element ΔP			□ PSID	BARD	(Тур	ically 15	5-30% ind	licator	trip setting)	
Maximum Loaded Element ΔP			PSID	BARD	(dep	endent	on bypas	ss valv	/e setting)	
Element Change Interval										
Target ISO Cleanliness Code (per ISO4409:1999, 4/6/14)										
System Pressure	Normal:			Maximu	n:				PSID	BARD
Pump Flow Rate	Normal:			Maximu	m:				GPM	LPM
Return Flow Rate	Normal:			Maximu	n:				GPM	LPM
Seal Material	□ Nitrile	(Buna)	□ Viton	EPR	🗖 Si	ilicone	O the	er:		
Bypass Valve	□ None	□ 3 psi (0.21 bar)	□ 5 psi (0.34 ba	□ 15 psi r) (1.03 ba	□ 2 r) (1.	5 psi 72 bar)	□ 50 p (3.45		□ 102 psi (7.0 bar)	
Differential Pressure Indicator	Uisual P	op-Up	Electrical	Uisual Electrica		∆ P Ga	uge		Gauge ectrical	□ None
Mounting Arrangement (bowl down, top loading, etc)										
Port Configuration (in-line 180°, 90°, dual inlet, etc)										
Other Requirements (duplex, reverse flow, bi-directional, etc)										
Space Restrictions (overhead)										
Quantity and Required Delivery										
Notes:										

245


²⁴⁶ Non-Standard Filter Element Worksheet

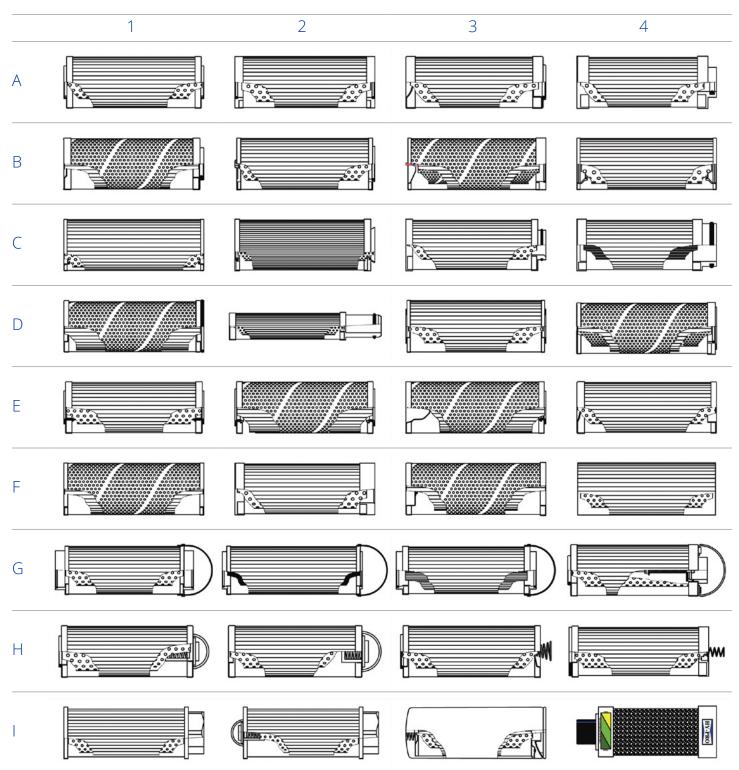
Name				
Company				
Phone				
Email				
Part Number				
Element OEM				
Element Style ¹				(i.e. 1A – Select from page next page)
Quantity Required				
End Cap Material				(plated steel, stainless steel, plastic molded, etc)
Support Tube				(no-coreless, inner only, outer only, inner + outer)
Bypass Valve	🗆 Yes	□ No		
Bypass Setting			PSID	BARD
Media Type				(cellulose, poly, glass, wire mesh, stainless fiber)
Media Rating				(nominal, absolute, $\beta X_{CI} = ?$, $\beta X = ?$)
Seal Location				(none, single end, double end)
Seal Type				(captured o-ring, male o-ring, flat gasket, grommet)
Seal Material				(Buna, Viton/fluorocarbon, EPR, silicone, neoprene)
Flow Direction	🗖 In-to-out	Out-to-in		
Collapse Rating			PSID	BARD
Fluid Type + ISO VG				
Dimonsions	Dimension box	es H. I. I. have been	left blank for use i	in a sketch or other features that need to be added to the

Dimensions

□ inches □ cm

Dimension boxes H, I, L have been left blank for use in a sketch or other features that need to be added to the drawing. When measuring for dimensions E and F (o-ring touch-off) be sure that the o-ring is still installed and that the caliper blade makes only very light contact with the o-ring. Do not apply pressure to the o-ring. With captured o-ring seal end caps the B or D dimension will typically be smaller than the A or C dimension respectively.

L:



D (id2a):

If your element style is not on the grid (see next page), please send a sketch and/or digital photos.

H:

Non-Standard Filter Element Worksheet 247

Terms and Conditions

Standard Terms

248

Minimum Invoice \$50.00 Net

F.O.B.: Anderson, Indiana Terms: Net 30

A 1½% per month (18% annual percentage rate) finance charge may be added to your account on any amount that is more than 30 days past due.

The items described in this document are hereby offered for sale at prices to be established by Hy-Pro Filtration, its subsidiaries and its authorized distributors. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any item described in its document, when communicated to Hy-Pro Filtration, its subsidiary or an authorized distributor ("Seller") verbally or in writing, shall constitute acceptance of this offer.

- 1. Terms and Conditions of Sale: All descriptions, quotations, proposals, offers, acknowledgments and sales of Seller's products are subject to and shall be governed exclusively by the terms and conditions stated herein. Buyer's acceptance of any offer to sell is limited to these terms and conditions. Any terms or conditions in addition to, or inconsistent with those stated herein, proposed by Buyer in any acceptance of an offer by Seller, are hereby objected to. No such additional, different or inconsistent terms and conditions shall become part of the contract between Buyer and Seller unless expressly accepted in writing by Seller. Seller's acceptance of any offer to purchase by Buyer is expressly conditional upon Buyer's assent to all the terms and conditions stated herein, including any terms in addition to, or inconsistent with those contained in Buyer's offer. Acceptance of Seller's products shall in all events constitute such assent.
- Delivery: Unless otherwise provided on the face hereof, delivery shall be made F.O.B. Seller's plant. Regardless of the method of delivery, however, risk of loss shall pass to Buyer upon Seller's delivery to a carrier. Any delivery dates shown are approximate only and Seller shall have no liability for any delays in delivery.
- 3. Element Warranty: Seller warrants that the items sold hereunder shall be free from defects in material or workmanship for a period of 365 days from the date of shipment to Buyer. This warranty comprises the sole and entire warranty pertaining to items provided hereunder, Seller makes no other warranty, guarantee, or representation of any kind whatsoever, all other warranties, including but not limited to, merchantability and fitness for purpose, whether express, implied, or arising by operation of law, trade usage, or course of dealing are hereby disclaimed. Notwithstanding the foregoing. There are not warranties whatsoever on items built or acquired wholly or partially, to buyer's designs or specifications. Excludes manufactured equipment, see Equipment Warranty.
- 4. Limitation of Remedy: Seller's liability arising from or in any way connected with the item sold or this contract shall be limited exclusively to the repair or replacements of the items sold or refund of the purchase price paid by Buyer, at Seller's sole option. In no event shall Seller be liable for any incidental consequential or special damages of any kind, or nature whatsoever, including but not limited to lost profits arising from or in any way connected with this agreement or items sold hereunder, whether alleged to arise from breach of contract, express or implied warranty or in tort, including without limitation, negligence, failure to warn or strict liability.
- 5. Changes, Reschedules and Cancellations: Buyer may request to modify the designs or specifications for the items sold hereunder as well as the quantities and delivery dates thereof, or may request to cancel all or part of this order, however, no such requested modification or cancellation shall become part of the contract between Buyer and Seller unless accepted by Seller in a written amendment to this Agreement. Acceptance of any such requested modifications or cancellation shall be upon such terms and conditions as Seller may require. Special (non-catalog) articles are not cancelable or returnable. Subject to a 20% restocking charge.
- 6. Special Tooling: A tooling charge may be imposed for any special tooling, including without limitation, dies, fixtures, molds and patterns acquired to manufacture items sold pursuant to this contract. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller, which is utilized in the manufacture of the items sold hereunder, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.
- 7. Buyer's Property: Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two (2) consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.
- 8. Taxes: Unless otherwise indicated on the face hereof, all prices and charges are exclusive of excise, sales, use, property occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of the items, sold hereunder. If any such taxes must be paid by Seller or if Seller is liable for the collection of such tax, the amount thereof shall be in addition to the amounts of the items sold. Buyer agrees to pay all such taxes or to reimburse Seller therefore upon receipt of its invoice. If Buyer claims exemption from any sales, use or other tax imposed by any taxing authority, Buyer shall save Seller harmless from and against any such tax, together with any interest or penalties thereon which may be assessed if the items are held to be taxable.

- 9. Force Majeure: Seller does not assume the risk of and shall not be liable for delay or failure to perform any of Seller's obligations by reason of circumstances beyond the reasonable control of the Seller (hereinafter "Events of Force Majeure"). Events of Force Majeure shall include without limitation, accidents, acts of God, strikes or labor disputes, acts, laws, rules or regulations of any government or government agency, fires, floods, delays or failures in delivery of carriers or suppliers, shortages of materials and any other cause beyond Seller's control.
- 10. Entire Agreement/Governing Law: The terms and conditions set forth herein, together with any amendments, modifications and any different terms or conditions expressly accepted by Seller in writing, shall constitute the entire Agreement concerning the items sold, and there are no oral or other representations or agreements which pertain thereto. This Agreement shall be governed in all respects by the law of the state of Indiana. No actions arising out of the sale of the items sold hereunder of this Agreement may be brought by either party more than two (2) years after the cause of action accrues.
- 11. Packaging and Shipping: Items are provided with standard commercial packaging, labeling, painting and inspection. Prices and discounts are based on standard commercial packaging only. Hy-Pro Filtration reserves the right to make partial shipments at its discretion.
- 12. Returns: Contact Hy-Pro Filtration for a Return Goods Authorization (RGA) number. Returns will not be accepted without a complete RGA number attached to the product or shipping documents. Returned material must be in sellable condition, in original packaging and sealed. Elements may be returned within one year of date code. Returns must be received by Hy-Pro Filtration within 45 days after an authorization (RGA) number is issued. Returns are subject to a 20% restocking charge.
- 13. Payment: Shall be made by Buyer net 30 days from the date of delivery of the items purchased hereunder. Any claims by Buyer for omissions or shortages in a shipment shall be waived unless Seller receives notice thereof within 30 days after Buyer's receipt of the shipment.
- 14. Indemnity for Infringement of Intellectual Property Rights: Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Part 10. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets (hereinafter 'Intellectual Property Rights'). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer bases on an allegation that an item sold pursuant to this contract infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If any item sold hereunder is subject to a claim that it infringes the Intellectual Property Rights of a third party. Seller may at its sole expense and option, procure for Buyer the right to continue using said item, replace or modify said item so as to make it non-infringing, or offer to accept return of said item and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing. Seller shall have no liability for claims of infringement for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any item sold hereunder. The foregoing provisions of this Part 10 shall constitute Seller's sole and exclusive liability and Buyers de and exclusive remedy for infringement of Intellectual Property Rights. If a claim is based on information provided by Buyer or if the design for an item delivered hereunder is specified in whole or in part by Buyer. Buyer shall defend and indemnify Seller for all costs, expenses or

Bulletin # MKTTC2014/12

Warranty Statement

Hy-Pro Filtration manufactured equipment is warranted to be free from defective materials and workmanship for a period of one year from the date of shipment when used within the normal working parameters for which the equipment was designed. Hy-Pro Filtration assumes no responsibility for unauthorized installation of any added components, removal or repair of originally installed components or alterations or rewiring of originally supplied equipment. Any such changes without written instructions or prior approval from Hy-Pro Filtration will void all warranties. If any Hy-Pro Filtration supplied equipment does not perform as warranted, it will be repaired or replaced at Hy-Pro Filtration's discretion. If deemed defective due to improper use, installation, start-up, or maintenance, Hy-Pro Filtration reserves the right to charge the Purchaser with the full costs associated with warranty replacement. Hy-Pro Filtration will ship warranty replacements via standard ground service. If other modes are required, the customer may be liable for costs incurred. It is the customer's responsibility to properly ship, freight prepaid, all item(s) to be returned to Hy-Pro Filtration. Shipping insurance is recommended. This warranty does not apply to parts, which through normal use require replacement during the warranty period. Hy-Pro Filtration liability under this warranty shall be limited to repair or replacement. In no event, however, will Hy-Pro Filtration be liable for any labor or consequential damages. This warranty shall not apply to any assembly or component part of the equipment which has been furnished by Purchaser. Except for the express warranty set forth above, Hy-Pro Filtration hereby disclaims all warranties, expressed or implied, to Purchaser, including but not limited to, warranty of fitness for a particular purpose and warranty of merchantability. Hy-Pro Filtration shall not be liable for any incidental or consequential damages which might arise out of the use of this property.

²⁵⁰ Merchandise Return & Warranty Authorization Policy

Any merchandise returned to the factory for credit or warranty replacement must be accompanied by a completed Return Goods Authorization (RGA) form. To obtain an RGA number and form you must contact Customer Service at 317.849.3535. All shipments must be sent to the factory freight prepaid, unless otherwise approved. Shipping insurance is recommended. Returns must be sent to the correct factory location, Customer Service will confirm the return location.

Hy-Pro Filtration 6810 Layton Road Anderson, IN 46011 Hy-Pro Filtration West 1704 64th Ave, Suite B Vancouver, WA 98661

In the case of multiple item returns, all items must be tagged with possible causes of failure (if applicable). Please mark the outside of each shipping carton with the RGA number.

Return Disposition: Elements and Non-Manufactured Equipment

- **1.** Upon request, an authorized RGA number and form will be issued to the customer.
- 2. Any items returned must be in unused condition, unless otherwise authorized.
- **3.** If items are returned for a customer related error a restocking fee up to 20% will be applied.
- **4.** If items are returned for a Hy-Pro related error a full credit will be issued.
- **5.** Credit will not be issued on items which are no longer in specification with current design, were manufactured more than 12 months prior to the return date, or were damaged in return shipping. Hy-Pro will determine if the items are suitable for return.
- 6. If the return material is not received within 45 days from the date of issue, Hy-Pro will cancel the RGA and reserves the right to not accept the return, unless otherwise authorized.
- 7. Items returned shall be shipped to the factory freight prepaid. Shipping insurance is recommended.

Return Disposition: Manufactured Equipment

Complete Equipment Return:

- 1. Upon request, an authorized RGA and form will be issued to the customer.
- 2. The customer must return equipment to the appropriate plant indicated on the RGA.
- 3. If equipment is returned for a customer related error a restocking fee up to 20% will be applied.
- 4. If equipment is returned for a Hy-Pro related error a full credit will be issued.
- **5.** Credit will not be issued on equipment which is no longer in specification with current design, were manufactured more than 12 months prior to the return date, or were damaged in return shipping. Hy-Pro will determine if the equipment is suitable for return.
- **6.** If the return equipment is not received within 45 days from the date of issue, Hy-Pro will cancel the RGA and reserves the right to not accept the return, unless otherwise authorized.
- 7. Equipment returned shall be shipped to the factory freight prepaid. Shipping insurance is recommended.

Defective Component Return (Warranty Claims):

- 1. Upon request, an authorized warranty RGA claim number and form will be issued to the customer.
- 2. The customer must return the item(s) to the appropriate plant indicated on the RGA.
- 3. The customer must supply a replacement PO for warranty claim processing.
- **4.** Hy-Pro reserves the right to refuse warranty coverage and charge
 - all costs associated with warranty replacement if:
 - **a.** The item(s) are deemed defective as a result of inappropriate use, installation, start-up, improper maintenance or during return shipping.
 - **b.** The warranty claim is not received by Hy-Pro within 45 days of the date of issue, unless otherwise authorized.
- **5.** Items returned shall be shipped to the factory freight prepaid. Shipping insurance is recommended.

Note: All correspondence must reference the RGA# to ensure proper tracking return or claim.

ATEX Recommendation for the use of fluid filter and maintenance indicators in hazardous zones according to Directive 2014/34/EU

Fluid Filters	Filters (hydraulic-, lubrication-oil-, air breather-) in fluid systems are not subjective to this directive. Fluid filters do not require a CE- marking.
	For fluid filters to be used in hazardous zones, the ignition sources have to be analyzed by the operator, considering the complete installation.
	During filtration of fluid and gases, electrostatic charge may occur on the filter element, the filter housing and the fluid – especially when glass fiber filter elements are used.
	For use in hazardous zones, Hy-Pro Filtration recommends to use only metal filter housings and to connect the housing electrically to ground.
	These filters do not possess any external ignition source.
	The earthing is realized by using the clamping bolts. The maximum content of magnesium is less than 7.5%.
	The size of the largest projected non-conducting areas are smaller than 100 sqcm (400 sqcm if a conducting framing is provided).
	According to DIN EN 13463, the Hy-Pro fluid filters are suitable for the use in applicance group II category 2 G/D up to 120 Deg C.
	The function of the electrical maintenance indicator is described below.
Maintenance Indicators	The electrical maintenance indicators provided with Hy-Pro released products are simple electrical devices according to DIN EN 60079-11, without their own voltage supply.
	The electrical components consist of reed-contacts, bimetal switches, plug connections and terminal clamps.
	For equipment group II, category 2 G (zone 1) and category 2 D)zone 21), these simple electrical components can be used acc. EN 60079-14 and EN241-11 in intrinsically safe circuits [EEX ib] without making and certification.
	The EN 60079-12 (gas) and EN 61241-14 (dust) installation regulations have to be observed as well as the national security terms and accident prevention regulations.
	The electrical utilities are attributed to category ib and temperature class T5.
	If the electrical upper part is used, conventional (intrinsically safe circuit), it will not present itself as a heat source.
	Usage in EX-zones is possible when the indicators are connected intrinsically safe (EX-i).
	For that purpose, a switch amplifier with an intrinsically safe input is required. The switch amplifier must be installed outside the EX-zone, leaving only the intrinsically safe wires in contact with the hazardous zone.

251

²⁵² FLA Estimated Amp Draw

FSLD

Flow	HP	Pow	Power Option														
Rate	(kW)	11	X11	12	X12	21	X21	23	X23	40	X40	46	X46	52	X52	57	X57
0.5-2	0.5 (0.37)	7.2	6.4	7.4	6.6	3.6	3.1	1.9	1.6	0.86	0.8	0.95	0.8	0.89	1.3	0.69	1.1
5	1 (0.75)	12.4	12.4	12.8	13	6.4	6.2	3.7	3.2	1.85	1.9	1.7	1.6	1.5	1.3	1.3	1.1
10	2 (1.5)	20	23	17.6	23.2	10	11.5	8.8	11.3	3.1	3.6	3	2.9	2.5	2.4	2.3	2.2
22-32	5 (3.7)	NA	NA	NA	NA	22	23.5	23	8.4	7.6	8	6.5	4.2	5.7	5.4	5.2	5.2

CFU, FCLCOD, FCLCOT, FSLCOD

Flow	HP	Power Option															
Rate	(kW)	11	X11	12	X12	21	X21	23	X23	40	X40	46	X46	52	X52	57	X57
0.5-5	0.5 (0.37)	7.2	6.4	7.4	6.6	3.6	3.1	1.9	1.6	0.86	0.8	0.95	0.8	0.89	1.3	0.69	1.1
10	1 (0.75)	12.4	12.4	12.8	13	6.4	6.2	3.7	3.2	1.85	1.9	1.7	1.6	1.5	1.3	1.3	1.1
20	1.5 (1.1)	16	17	15	16	8	9	5	4.4	2.3	2.8	2.3	2.2			1.8	2.2

SVR

Model	HP	Power Option															
	(kW)	11	X11	12	X12	21	X21	23	X23	40	X40	46	X46	52	X52	57	X57
1200	1 (0.75)	12.4	12.4	13.2	13	6.4	6.2	3.7	3.6	1.6	3.3	1.7	1.8	1.3	1.3	1.1	1.1
2400	1.5 (1.1)	16	16.5	15	15.5	8	8.5	5	4.4	2.3	2.8	2.3	2.2	2	2.4	1.8	2.2

FC, FCL, FPL, FSL, FSW, FSTO, FSA, FSJL

Flow	HP	Power Option															
Rate	(kW)	11	X11	12	X12	21	X21	23	X23	40	X40	46	X46	52	X52	57	X57
0.5-4	0.5 (0.37)	7.2	6.4	7.4	6.6	3.6	3.1	1.9	1.6	0.86	0.8	0.95	0.8	0.89	1.3	0.69	1.1
5-10	1 (0.75)	12.4	12.4	12.8	13	6.4	6.2	3.7	3.2	1.85	1.9	1.7	1.6	1.5	1.3	1.3	1.1
22-32	3 (2.2)	NA	NA	NA	NA	13.2	14	8	8.4	4.4	5.2	3.8	4.2	3.2	3.5	3.1	3.3

*Equipment with on board PM-1 (O Option) may have higher power motors and higher amp draw. Contact factory.

Indicator Wiring Diagrams

PFH 131, 152, 419 PF2, PFH131, PFH152, PFH419 "DX" INDICATORS PF2 "L" INDICATOR OPTION DIN 43650A PLUG & RECEPTACLE DIN 43650A PLUG & RECEPTACLE DIN 43650A PLUG & RECEPTACLE WITH CABLE CLAMP WITH CABLE CLAMP WITH CABLE CLAMP U SPDT SWITCH SPDT SWITCH 1 - COMMON SPDT SWITCH C - 24 V DC Common (-) 2 - NC 1 2 1 = COMMON 1 - 24 V DC (+) 3 - NO 1 2 1 2 2 = NC2 - NC 3 = NO3 - NO 3 SWITCHING VOLTAGE: MAX. 120 V AC / 175V DC ALTERNATING CURRENT: 250 V AC 5 AMPS 24 V DC MAXIMUM VOLTAGE 0.25 AMP MAX SWITCHING CURRENT: MAX. 0.17A AC / 0.25A DC MAX. 3.5 VA AC / 5W DC 3 WATT MAX POWER SWITCHING POWER: DIRECT CURRENT **RESISTIVE VOLTAGE: 220** INDUCTIVE LOAD AMPS: 0.25 LOAD AMPS: 0.10 LFIND-F,D,H F8, PF4 MF3, S409 For FSL, FCL, FCLCOD, FSLCOD, FSTO, FSA, FSJL, **DIN 43650A PLUG & RECEPTACLE** DIN 43650A PLUG & RECEPTACLE SVR, LF, LFM, DLF, DLFM, FPL&FC "D3" OPTION WITH CABLE CLAMP WITH CABLE CLAMP STANDARD PORT SPDT SWITCH SPDT SWITCH 1 2 1 - COMMON 1 - COMMON 1 - COMMON 2 - NC 2 - NO 2 - NO 1 2 1 2 3 - NO 3 - NC 3 - NC 3 TYPE: SPDT A PROTECTIVE CONDUCTOR OPTION: Н TERMINAL IS PROVIDED ON THE DIN CONNECTOR POWER: 60W MAX. CURRENT: 1.0 AMPS ELECTRICAL RATINGS 5A MAX. VOLTAGE (VAC/VDC): 240 4 AMPS, INDUCTIVE 125/250 V AC SETTING (%F.S.): 25 TO 100 7 AMPS, RESISTIVE 24 V DC (RESISTIVE) 2 AMPS, LAMP LOADED @ 28 V DC, 115 V AC 60 HZ AUTOMATIC RESETTING 28 V DĆ **DFN/DFH** G25E / G45E G25D / G45D 43650A PLUG & RECEPTACLE DIN 43650A PLUG & RECEPTACLE NO - RED WITH CABLE CLAMP - COMMON - BLACK WITH CABLE CLAMP NC - GREEN SPDT SWITCH SPDT SWITCH 1 - NO OR NC (REVERSIBLE) 1 - COMMON - NC OR NO (REVERSIBLE) 2 - NC 1 1 2 3 & 🔔 - NOT USED 3 - NO 3A 125 V AC MAX 3A 125 V AC MAX 1A 250 V AC / 200 V DC 3A 40 V DC MAX 3A 40 V DC MAX U.L. RECOGNIZED

250 V AC / 200 V DC 70W AUTOMATIC RESETTING

hyprofiltration.com/

²⁵⁴ Mounting Specifications

Assembly	Connection Option	Mounting Thread Type	Connection Flange Thread
PFH131	G12	M8 x 1.25	
	58	5/16 – 18 UNC	
	S12	5/16 – 18 UNC	
PFH152	G16	M10 × 1.50	
	S16	3/8 – 16 UNC	
PFH419	G20	M12 x 1.75	
	C20	M12 x 1.75	1/2 – 13 UNC
	S20	7/16 – 14 UNC	
	S24	7/16 – 14 UNC	
PFH840	C32	1/2 – 13 UNC	3/4 - 10 UNC
PFHB	C20	M14 x 2.0	M12 x 1.75
	C24	M16 x 2.0	M12 x 1.75
DFH19	F16	M8 x 1.25	M8 x 1.25
	G16	M8 x 1.25	
DFH39	F24	M12 x 1.25	M12 x 1.25
	G24	M12 x 1.25	
DFN19	F16	M8 x 1.25	3/8 x 16 - UNC
	G16	M8 x 1.25	
DFN39	F24	M10 x 1.5	7/16 – 14UNC
	G24	M10 x 1.5	

Quality Statement & ISO Certification

Our Mission

At Hy-Pro, our mission is to make our customers as efficient as possible. From improving the reliability of hydraulic and lube oil assets through our filter elements and filtration equipment to stopping equipment failures and downtime to reducing the environmental impact from the use and disposal of industrial fluids, it is our goal to eliminate industrial fluid contamination and all difficulties related to it.

Hy-Pro Filtration strives to provide the highest quality filtration products and solutions, with a strong commitment to customer service, competitive pricing, and customer product support. The company continuously develops product and process improvements along with the introduction of new products.

Quality Policy

Our policy is to provide the highest quality filtration products and service to both internal and external customers.

Our commitment is to continually improve products and processes, increase the capabilities of all employees and enhance the relationships with suppliers and customers.

ISO Certification

Hy-Pro Interchange The world's largest selection of critical filter elements.

With over 250,000 filter element crosses, Hy-Pro's Interchange offers the most extensive and comprehensive selection of critical hydraulic and lube oil filter elements anywhere. And it's only growing larger. Each year, we catalog thousands of filter elements in our efforts to provide our customers with the best contamination solutions, service and support possible.

Lower ISO Codes: Lower Total Cost of Ownership Hy-Pro filter elements deliver lower operating ISO Codes so you know your fluids are always clean, meaning lower total cost of ownership and reducing element consumption, downtime, repairs, and efficiency losses.

DFE Rated Filter Elements DFE is Hy-Pro's proprietary testing process which extends ISO 16889 Multi Pass testing to include real world, dynamic conditions ensures that our filter elements excel in your most demanding hydraulic and lube applications.

Upgrade Your Filtration Keeping fluids clean results in big reliability gains and upgrading to Hy-Pro filter elements is the first step to clean oil and improved efficiency.

Advanced Media Options DFE glass media maintaining efficiency to $\beta 0.7_{[c]} > 1000$, Dualglass + water removal media to remove free and emulsified water, stainless wire mesh for coarse filtration applications, and Dynafuzz stainless fiber media for EHC and aerospace applications.

Delivery in days, not weeks From a massive inventory of ready-toship filter elements to flexible manufacturing processes, Hy-Pro is equipped for incredibly fast response time to ensure you get your filter elements and protect your uptime.

More than just filtration Purchasing Hy-Pro filter elements means you not only get the best filters, you also get the unrivaled support, training, knowledge and expertise of the Hy-Pro team working shoulder-to-shoulder with you to eliminate fluid contamination.

Want to find out more? Get in touch.

hyprofiltration.com info@hyprofiltration.com +1 317 849 3535 © 2016 Hy-Pro Corporation. All rights reserved.

