

The DFH series is designed to remove particulate and water from a variety of fluids including hydrogen seal oil, turbine lube oil, bearing lube oil, and FD-ID-PA fan lube. Applicable for wind turbine, boiler feed pump, mechanical/electro hydraulic control, and fuel handling systems.

Ideal for systems where filters must be serviced while continuous operation is not interrupted such as hydraulic, gearbox, and servo systems.

Max Operating Pressure: 3600 psi (248 bar)

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 2.5_{\text{[C]}} = 1000$, + water absorption, you get the perfect element for your application, every time.

Two positions, one result.

DFH housings provide unmatched in-line filtration with incredible ease of use. With a squeeze of the trigger and turn of the wrist, you'll introduce a new element to your fluid while simultaneously valving the used element out of service to easily change and replace, all while your system continues operating at full capacity.

All duplexes are not created equal.

Air in any lube system can quickly cause failure and force you to take your system down for maintenance. DFN assemblies utilize internal equalization and external vent ports to automatically push oil into and purge air out from the unused housing without any added effort.

11.1 in [282.6 mm] **DFH19** 7.3 in [186.0 mm] **DFH39** 8.3 in [210.1 mm] 3.9 in [100.0 mm] Installation Installation 3.4 in 0.4 in [86.4 mm] [10.0 mm] Drawing Drawing 4X M12X1.25 4X M8X1.25 4.2 in [107.3 mm] 2.4 in [62.0 mm] 2.2 in [55.0 mm] 1.2 in [31.1 mm] 5.5 in [140.0 mm] 6.2 in [157.4 mm] 2.1 in [54.1 mm] 2.1 in [52.8 mm] 1.9 in [48.4 mm] 1.5 in [38.0 mm] (L6) (L4) 11.9 in [302.2 mm] 7.2 in [182.7 mm] (L6) 9.6 in [243.8 mm] (L10) (L10) 15.4 in [392.1 mm] 13.1 in [331.5 mm] (L15) 21.5 in [545.9 mm]

Filter Assembly Sizing

Filter Assembly Sizing Guidelines

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 32 cSt (150 SUS) viscosity and 0.86 fluid specific gravity. Use the following steps to calculate clean element assembly pressure drop.

Calculate ∆P	Using Saybolt Universal Seconds (SUS)										
coefficient for	AD Coofficient -	Actual Operating Viscosity ¹ (SUS)	V	Actual Specific Gravity							
actual viscosity	AP Coefficient =	150	- ^ -	0.86							
	Using Centistokes (cSt)	Actual Operating Viscosity ¹ (cSt)		Actual Specific Gravity							
	ΔP Coefficient =	32	- X	0.86							
Calculate actual clean filter assembly ΔP at both operating and cold start viscosity	Actual Assembly = Clean ΔP	Flow Rate X ΔP Coefficient (from calculation above)	Х	Assembly ∆P Factor (from sizing table)							
Sizing recommendations to optimize performance and permit future flexibility	 To avoid or minimize bypa should be repeated for stand Actual assembly clean ΔP gauge/indicator set point If suitable assembly size is desired degree of filtration degree of filtration might to enhance fluid cleanline Once a suitable filter asse 	ass during cold start the actual assembly cle art-up conditions if cold starts are frequent. should not exceed 10% of bypass ΔP at normal operating viscosity. s approaching the upper limit of the recomm n consider increasing the assembly to the ne be preferred in the future. This practice allo ss without compromising clean ΔP or filter e mbly size is determined consider increasing	an ΔP ca nended f ext large ws the fu lement l the asse	lculation low rate at the r size if a finer uture flexibility ife. embly to the							

• When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.

DFH Specifications

Operating Temperature Fluid Temperature (3° to 105° C) Ambient Temperature -4° to 140° F (2° to 105° C) Operating Pressure DFH19 3600 psi (26.8 bar) max DFH39 3000 psi (26.8 bar) max AP Indicator Trigger 73 psid (5 bard) Element Collapse Rating 450 psid (31.0 bard) Materials of Construction Head Cast steel Bowl Cast steel Housing Bypass Valve Steel Media Description Ma Gaugigas, our latest generation and for all hydraul & kutorization fluids, βx _{ig} = 1000 (βx = 200) A Gaugigas, steel wire mesh media for all hydraul & kutorization fluids, βx _{ig} = 1000 (βx = 200) W Stainless steel wire mesh media for all hydraul & kutorization fluids, βx _{ig} = 1000 (βx = 200) Replacement Elements To determine replacement Biter Element Part Number HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code) Licraph Code] - [Media Selection Code][Seal Code] HP19 (Collapse Code] Licraph Code] - [Me	Dimensions	See Installation Drawing on page 221 for model specific dimensions.													
Operating Pressure DFH19 3000 psi (248.2 bar) max DFH39 3000 psi (206.8 bar) max AP Indicator Trigger 73 psid (5 bard) 73 psid (5 bard) Element Collapse Rating 450 psid (31.0 bard) Head Cast steel Bowl Cast steel Housing Bypass Valve Steel Materials of Construction Head Cast steel Bowl Cast steel Housing Bypass Valve Steel Media Description M GB Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids, $\beta_{K_{rig}} = 1000$ ($\beta_K = 200$) M GB Dualglass high performance scrim, $\beta_{K_{rig}} = 1000$ ($\beta_K = 200$) W Stainless steel wire mesh media $\beta_{K_{rig}} = 2$ ($\beta_K = 2$) Replacement Elements To determine replacement elements, use corresponding codes from your assembly part number: Filter Element Part Number HP19 [Collapse Code] Llength Code] - [Media Selection Code][Seal Code] HP19RUE - Gody HP19RUE - Gody HP1	Operating Temperature	Fluid Ten 30°F to 22 (0°C to 10	nperature 25°F 05°C)			Ambient Temperature -4°F to 140°F (-20C to 60C)									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Operating Pressure	DFH19 3600 psi ((248.2 bar) n	nax		DFH39 3000 psi (206.8 bar) max									
Element Collapse Rating 450 psid (31.0 bard) Materials of Construction Head Cast steel Bowl Cast steel Housing Bypass Valve Steel Media Description M GB Dualglass, our latest generation media for PE rated, high performance glass media a combined with water removal scrim, $B_{X_{ric}} = 1000 (Bx = 200)$ W Media Cast steel Stainless steel wire mesh media $B_{X_{ric}} = 2 (Bx = 2)$ Replacement Elements To determine replacement elements, use corresponding codes from your assembly part number: Example HP19HClolapse Code] L [Length Code] - [Media Selection Code][Seal Code] HP19HClolapse Code] L [Length Code] - [Media Selection Code][Seal Code] HP19HL6-10MB HP39NL6-6AV Filter Sizing ¹ Filter assembly data element AP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See previous page for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations. AP Factors ¹ Model Length Units Media 1M 3M 6M 10M 25M **W Modes DFH19 L4 psid/gpm 3.402 2.99 0.0158 0.0152 0.0076 L6 psid/gpm 2.099 1.771 1.98 0.0164 0.0158 0.0152 0.0076 L6 psid/gpm 0.0322 0.0232 0.0180	∆P Indicator Trigger	73 psid (5 bard)													
Materials of ConstructionHead Cast steelBowl Cast steelHousing Bypass Valve SteelMedia DescriptionM GB Dualglass, our latest generation of DEF rated, high performance glass media for all hydraulic & lubrication fluids. $\beta_{X_{10}} = 1000$ ($\beta_X = 200$)A GB Dualglass high performance media combined with water removal scrim, $\beta_{X_{10}} = 1000$ ($\beta_X = 200$)W Stainless steel wire mesh media $\beta_{X_{10}} = 2$ ($\beta_X = 2$)Replacement ElementsTo determine replacement elements, use corresponding codes from your assembly part number: Erring 19 39Filter Element Part Number HP39ICollapse Code] L [Length Code] - [Media Selection Code][Seal Code] HP39ILG-66AVHP39HLG-10MB HP39ILG-66AVFluid CompatibilityBiodegradable and mineral based fluids. For high water based of specified synthetics, consult factory.Filter assembly bypass setting. See previous page for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations.Set **WAP Factors!Model LengthLength DefH19 L4Units brid/gpmMedia 1MSM6M10M16M 25M25M**WDFH19 L10 bard/lpmL4psid/gpm3.402 0.6232.871 0.02321.927 0.018 0.01320.0161 0.00160.0026 0.03220.0161 0.00180.0152 0.0076DFH39 L6L6psid/gpm0.654 0.6520.552 0.4170.0142 0.344 0.02420.649 0.0428 0.00240.0142 0.01420.0142 0.01420.0152 0.01510.0127 0.0124DFH39<	Element Collapse Rating	450 psid (31.0 bard)													
$ \begin{array}{c} \mbox{Media} \\ \mbox{Description} \\ \mbox{Media} \\ \mbox{G8} \mbox{Dualglass, our latest generation} \\ \mbox{of DFE rated, high performance glass} \\ \mbox{media for all hydraulic & lubrication} \\ \mbox{fulds.} \mbox{$\beta_{X_{1C}} = 1000 (\beta x = 20)} \\ \mbox{Media for all hydraulic & lubrication} \\ \mbox{fulds.} \mbox{$\beta_{X_{1C}} = 1000 (\beta x = 20)} \\ \mbox{Media for all hydraulic & lubrication} \\ \mbox{fulds.} \mbox{$\beta_{X_{1C}} = 1000 (\beta x = 20)} \\ \mbox{Media for all hydraulic & lubrication} \\ \mbox{Series Code} \\ \mbox{19} \\ \mbox{Series Code} \\ \mbox{HP19[Collapse Code] L [Length Code] - [Media Selection Code][Seal Code] \\ \mbox{HP19HL6-10MB} \\ \mbox{HP39[Collapse Code] L [Length Code] - [Media Selection Code][Seal Code] \\ \mbox{HP19HL6-10MB} \\ \mbox{HP39[Collapse Code] L [Length Code] - [Media Selection Code][Seal Code] \\ \mbox{HP19HL6-10MB} \\ \mbox{HP39NL6-6AV} \\ \mbox{Fluid} \\ \mbox{Biodegradable and mineral based fluids. For high water based of specified synthetics, consult factory. \\ \mbox{Compatibility} \\ \mbox{Filter Sizing}^1 \\ \mbox{Filter assembly clean element } \mbox{AP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See previous page for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations. \\ \mbox{AP Factors}^1 \\ \mbox{Model Length Units } \\ \mbox{Media} \\ \mbox{Media} \\ \mbox{Media} \\ \mbox{Media} \\ \mbox{Model Length Units } \\ \mbox{Media} \\ \mbox{Media} \\ \mbox{Media} \\ Model 0.0523 0.0321 0.00161 0.0086 0.0052 0.0023 0.0331 0.0161 0.0086 0.0052 0.0023 0.0232 0.0218 0.0190 0.0158 0.0152 0.0076 0.0053 0.0024 0.0048 0.0042 0.0048 0.00428 0.00428 0.0048 0.00428 0.0048 0.00428 0.0048 0.00428 0.0048 0.00428 0.0048 0.00428 0.0048 0.00428 0.0048 0.00428 0.0049 0.0048 0.00415 0.0048 0.0048 0.0049 0.0048 0.0048 0.0048 0$	Materials of Construction	Head Cast steel			Bowl Cast stee	2		ŀ	Housing Bypass Valve Steel						
Replacement Elements To determine replacement elements, use corresponding codes from your assembly part number: Example 19 39 Example HP19[Collapse Code] L [Length Code] - [Media Selection Code][Seal Code] Example HP19HL6-10MB HP39NL6-6AV Fluid Compatibility Biodegradable and mineral based fluids. For high water based of specified synthetics, consult factory. Fluer assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See previous page for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations. ΔP Factors ¹ Model Length Units Media 1M 3M 6M 10M 16M 25M **W DFH19 L4 psid/gpm 3.402 2.871 1.927 1.303 0.920 0.886 0.470 L6 psid/gpm 2.099 1.771 1.192 0.0158 0.0151 0.0086 L10 psid/gpm 0.499 0.654 0.552 0.417 0.044 0.027 0.0233 0.0261 0.0158 0.0114 0.0028 L10 psid/gpm 0.519 0.438 0.323 0.0232 0.0261 0.0158 0.0140 0.0028 L10 psid/	Media Description	M G8 Dualg of DFE rai media for fluids. βx _t	lass, our late ted, high per r all hydrauli _{cg} = 1000 (βx	est generation formance glass c & lubrication : = 200)	A G8 Dualş media co scrim. β	glass high p ombined wi x _[C] = 1000 (performance ith water rem βx = 200)	noval r	W Stainless steel wire mesh media $\beta x_{[C]} = 2$ (βx = 2)						
Fluid Compatibility Biodegradable and mineral based fluids. For high water based of specified synthetics, consult factory. Filter Sizing ¹ Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See previous page for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations. ΔP Factors ¹ Model Length Units Media 1M 3M 6M 10M 16M 25M **W DFH19 L4 psid/gpm 3.402 2.871 1.927 1.303 0.920 0.886 0.470 L6 psid/gpm 2.099 1.771 1.198 1.042 0.866 0.834 0.417 L10 psid/gpm 0.0272 0.0230 0.0190 0.0158 0.0152 0.0057 DFH39 L6 psid/gpm 0.654 0.552 0.417 0.344 0.271 0.261 0.155 L10 psid/gpm 0.619 0.0119 0.0101 0.0076 0.0063 0.0049 0.0048 0.0028 L10 psid/gpm	Replacement Elements	To determine replacement elements, use corresponding codes from your assembly part numSeries CodeFilter Element Part NumberExample19HP19[Collapse Code] L [Length Code] – [Media Selection Code][Seal Code]HP19HL6-10MB39HP39[Collapse Code] L [Length Code] – [Media Selection Code][Seal Code]HP39NL6-6AV													
Filter Sizing ¹ Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See previous page for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations. ΔP Factors ¹ Model Length Units Media 1M 3M 6M 10M 16M 25M **W DFH19 L4 psid/gpm 3.402 2.871 1.927 1.303 0.920 0.886 0.470 DFH19 L4 psid/gpm 3.402 2.871 1.927 1.303 0.920 0.886 0.470 DFH19 L4 psid/gpm 0.0620 0.0523 0.0351 0.0237 0.0168 0.0161 0.0086 L6 psid/gpm 2.099 1.771 1.198 1.042 0.866 0.834 0.417 DFH39 L6 psid/gpm 0.421 1.042 0.782 0.649 0.625 0.313 DFH39 L6 psid/gpm 0.654 0.552 0.417 0.344 0.271 0.261 0.155 DFH39 L6 psid/gpm <td>Fluid Compatibility</td> <td colspan="12">Biodegradable and mineral based fluids. For high water based of specified synthetics, consult factory.</td>	Fluid Compatibility	Biodegradable and mineral based fluids. For high water based of specified synthetics, consult factory.													
ΔP Factors1 Model Length Units Media 1M 3M 6M 10M 16M 25M **W DFH19 L4 psid/gpm 3.402 2.871 1.927 1.303 0.920 0.886 0.470 DFH19 L4 psid/gpm 3.402 2.871 1.927 1.303 0.920 0.886 0.470 L6 psid/gpm 2.099 1.771 1.198 1.042 0.866 0.834 0.417 L10 psid/gpm 1.494 1.261 1.042 0.782 0.649 0.625 0.313 DFH39 L6 psid/gpm 0.0523 0.0190 0.0142 0.0118 0.0114 0.0057 DFH39 L6 psid/gpm 0.654 0.552 0.417 0.344 0.271 0.261 0.155 bard/lpm 0.0119 0.0101 0.0076 0.0063 0.0049 0.0048 0.0028 L10 psid/gpm 0.519 0.438 0.323	Filter Sizing ¹	Filter assembly clean element ∆P after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See previous page for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations.													
DFH19 L4 psid/gpm bard/lpm 3.402 2.871 1.927 1.303 0.920 0.886 0.470 bard/lpm 0.0620 0.0523 0.0351 0.0237 0.0168 0.0161 0.0086 L6 psid/gpm 2.099 1.771 1.198 1.042 0.866 0.834 0.417 bard/lpm 0.0382 0.0323 0.0218 0.0190 0.0158 0.0152 0.0076 L10 psid/gpm 1.494 1.261 1.042 0.782 0.649 0.625 0.313 bard/lpm 0.0272 0.0230 0.0190 0.0118 0.0114 0.0057 DFH39 L6 psid/gpm 0.654 0.552 0.417 0.344 0.271 0.261 0.155 bard/lpm 0.0119 0.0101 0.0076 0.0063 0.0049 0.0048 0.0028 L10 psid/gpm 0.519 0.438 0.323 0.2875 0.2014 0.2045 0.2015 L10<	∆P Factors ¹	Model	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W				
L6 psid/gpm 2.099 1.771 1.198 1.042 0.866 0.834 0.417 bard/lpm 0.0382 0.0323 0.0218 0.0190 0.0158 0.0152 0.0076 L10 psid/gpm 1.494 1.261 1.042 0.782 0.649 0.625 0.313 bard/lpm 0.0272 0.0230 0.0190 0.0142 0.0118 0.0114 0.0057 DFH39 L6 psid/gpm 0.654 0.552 0.417 0.344 0.271 0.261 0.155 L10 psid/gpm 0.654 0.552 0.417 0.344 0.271 0.261 0.155 bard/lpm 0.0119 0.0101 0.0076 0.0063 0.0049 0.0048 0.0028 L10 psid/gpm 0.519 0.438 0.323 0.287 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.2435 0.2435		DFH19	L4	psid/gpm bard/lpm	3.402	2.871	1.927	1.303	0.920	0.886	0.470				
L10 psid/gpm 1.494 1.261 1.042 0.782 0.649 0.625 0.313 DFH39 L6 psid/gpm 0.654 0.552 0.417 0.344 0.271 0.261 0.0155 0.0136 0.0142 0.0118 0.0114 0.0057 DFH39 L6 psid/gpm 0.654 0.552 0.417 0.344 0.271 0.261 0.155 bard/lpm 0.0119 0.0101 0.0076 0.0063 0.0049 0.0048 0.0028 L10 psid/gpm 0.519 0.438 0.323 0.287 0.243 0.234 0.135			L6	psid/gpm	2.099	1.771	1.198	1.042	0.866	0.834	0.417				
DFH39 L6 psid/gpm 0.654 0.552 0.417 0.344 0.271 0.261 0.155 bard/lpm 0.0119 0.0101 0.0076 0.0063 0.0049 0.0048 0.0028 L10 psid/gpm 0.519 0.438 0.323 0.287 0.243 0.234 0.234 0.234 0.234 0.135			L10	psid/gpm	1.494	1.261	1.042	0.782	0.649	0.625	0.313				
bard/lpm 0.0119 0.0101 0.0063 0.0049 0.0048 0.0028 L10 psid/gpm 0.519 0.438 0.323 0.287 0.243 0.234 0.135		DFH39	16	baid/gpm	0.654	0.552	0.417	0.344	0.271	0.261	0.155				
L10 psid/gpm 0.519 0.438 0.323 0.287 0.243 0.234 0.135		205		bard/lpm	0.0119	0.0101	0.0076	0.0063	0.0049	0.0048	0.0028				
			L10	psid/gpm	0.519	0.438	0.323	0.287	0.243	0.234	0.135				
bard/ipm 0.0095 0.0050 0.0052 0.0044 0.0043 0.0025				bard/lpm	0.0095	0.0080	0.0059	0.0052	0.0044	0.0043	0.0025				
LTS psid/gpm 0.463 0.391 0.301 0.266 0.218 0.210 0.117 hard/lpm 0.0084 0.0071 0.0055 0.0048 0.0040 0.0038 0.0021			L15	psid/gpm bard/lpm	0.463	0.391	0.301	0.266	0.218	0.210	0.117				

¹Max flow rates and ΔP factors assume υ = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula.

DFH Part Number Builder

DFH								-						
Seri	es	Connection	Collapse	Length	By	pass	ΔP Indicator		Media	Seal				
Series	19 39	25 gpm (70 gpm (95 lpm) max 265 lpm) ma	x flow rate ¹ ax flow rate ¹										
Connection	n Di F1 G1	-H19 6 ² 1" Code 6 6 1" G thre	51 flange ad (BSPP)				D F2 G2	0FH 24 ² 24	<mark>39</mark> 1½" Code 61 1½" G thread	flange d (BSPP)				
Collapse	H N	3000 psid 450 psid	d (206.8 bar (31.0 bard)	d)										
Element Length	Df 4 6 10	H19 4" (10 cm 6" (15 cm 10" (25 cr	i) nominal le i) nominal le m) nominal	ength filter el ength filter el length filter e	emei emei eleme	nt and hou nt and hou ent and ho	Dusing 6 using 10 busing 15	PFH D 5	<mark>39</mark> 6" (15 cm) no 10" (25 cm) r 15" (38 cm) r	ominal le nominal l nominal l	ength lengtl lengtl	filter eler n filter ele n filter ele	ment and ement an ement an	housing d housing d housing
Bypass	7 X	102 psid (No bypas	(7 bard) bypa s	955										
ΔP Indicato	or D V X	Visual wit Visual/Mo No indica	th electric sv echanical ator (port pla	witch (DIN co ugged)	nnec	ction)								
Media Selection	G{ 1N 3M 6M 10 16 25	$\begin{array}{l} \textbf{B} \textbf{Dualglass} \\ \textbf{B} \textbf{C} \textbf{C} \textbf{C} \\ \textbf{C} \textbf{C} \textbf{C} \\ \textbf{C} \textbf{C} \textbf{C} \\ \textbf{C} \textbf{C} \textbf{C} \\ \textbf$	1000, β1 = 2 00, β3 = 200 00, β6 = 200 000, β12 = 2 000, β17 = 2 000, β25 = 2	00 :) : 200 : 200 : 200 :	G8 [3A 6A 10A 25A	+ water removal 00, β3 = 200 00, β6 = 200 000, β12 = 200 000, β25 = 200			Stainless wire mesh25W25μ nominal40W40μ nominal74W74μ nominal149W149μ nominal					
Seals	B V	Nitrile (B Fluoroca	una) rbon											

¹When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. ²Metric threads for flange connection bolts. See Appendix for exact connection sizes and specifications.

